
Generator Documentation
Release 3.1

/ELSA/MU-09022/V3.1

May 28, 2020

CONTENTS

1 Preamble 1

2 List of functions 3

3 Contents 9
3.1 Basic grid generation . 9
3.2 General purpose grid generator . 17
3.3 Cartesian grid generators . 38
3.4 Operations on meshes . 44
3.5 Operation on surface meshes . 61
3.6 Information on generated meshes . 66
3.7 Operations on distributions . 81

4 Index 89

i

ii

CHAPTER

ONE

PREAMBLE

Generator module works on arrays (as defined in Converter) or on CGNS/python trees
(pyTrees) containing grid information (coordinates must be defined).

This module is part of Cassiopee, a free open-source pre- and post-processor for CFD sim-
ulations.

For use with the array interface, you have to import Generator module:

import Generator as G

For use with the pyTree interface:

import Generator.PyTree as G

1

Generator Documentation, Release 3.1

2 Chapter 1. Preamble

CHAPTER

TWO

LISTOF FUNCTIONS

– Basic grid generation

Generator.cart(Xo, H, N[, api]) Create a cartesian mesh defined by a struc-
tured array.

Generator.cartHexa(Xo, H, N[, api]) Create a cartesian mesh defined by an hex-
aedrical array.

Generator.cartTetra(Xo, H, N[, api]) Create a cartesian mesh defined by a
tetraedrical array.

Generator.cartPenta(Xo, H, N[, api]) Create a cartesian mesh defined by a pris-
matic array.

Generator.cartPyra(Xo, H, N[, api]) Create a cartesian mesh defined by a pyra-
midal array.

Generator.cartNGon(Xo, H, N[, api]) Create a cartesian mesh defined by a
NGON array.

Generator.cylinder(Xo, R1, R2, tetas,
tetae, . . .)

Create a portion of regular cylindrical grid.

Generator.cylinder2(Xo, R1, R2, tetas,
. . .)

Create a portion of cylindrical grid.

Generator.cylinder3(arrayxz, tetas,
tetae, . . .)

Create a portion of cylindrical grid.

– General purpose grid generators

Generator.delaunay(array[, tol, keepBB]) Create a delaunay mesh given a set of
points defined by array.

Generator.constrainedDelaunay(cont0[,
tol, . . .])

Create a constrained-Delaunay mesh start-
ing from a BAR-array defining the contour.

Generator.checkDelaunay(contour, tri) Check if the Delaunay triangulation de-
fined by tri is inside the contour.

Generator.T3mesher2D(a[, grading, . . .]) Create a delaunay mesh given a set of
points defined by a.

Continued on next page

3

Generator Documentation, Release 3.1

Table 2 – continued from previous page
Generator.tetraMesher(a[, maxh, grad-
ing, . . .])

Create a TRI/TETRA mesh given a set of
BAR or surfaces in a.

Generator.TFI(arrays) Generate a transfinite interpolation mesh
from boundaries.

Generator.TFITri(a1, a2, a3) Generate a transfinite interpolation mesh
from 3 input curves.

Generator.TFIO(a) Generate a transfinite interpolation mesh
for 1 input curve.

Generator.TFIHalfO(a1, a2) Generate a transfinite interpolation mesh
for 2 input curves.

Generator.TFIMono(a1, a2) Generate a transfinite interpolation mesh
for 2 input curves.

Generator.hyper2D(array, arrayd, type) Generate an hyperbolic mesh.
Generator.PolyLine.
polyLineMesher(polyLine, . . .)

Generate a multiple mesh for a polyline.

Generator.PolyC1.polyC1Mesher(curve,
h, . . .)

Generate a multiple mesh for a C1 curve
(polyC1).

Generator.pointedHat(array, coord) Create a structured surface defined by a
contour and a point (x,y,z).

Generator.stitchedHat(array, offset[, tol,
tol2])

Create a structured surface defined by a
contour and an offset (dx,dy,dz).

Generator.surfaceWalk(surfaces, c, dis-
trib)

Generate a surface mesh by a walk on a list
of surfaces, starting from a contour c and
following constraints.

Generator.collarMesh(s1, s2, distribj, dis-
tribk)

Generates a collar mesh starting from s1
and s2 surfaces, distributions along the
surfaces and along the normal direction,
with respect to the assembly type between
grids.

– Cartesian grid generators

Generator.gencartmb(bodies, h, Dfar,
nlvl)

Generate a muliblock Cartesian mesh.

Generator.octree(stlArrays[, snearList,
. . .])

Generate an octree (or a quadtree) mesh
starting from a list of TRI (or BAR) ar-
rays defining bodies, a list of correspond-
ing snears, and the extension dfar of the
mesh.

Generator.octree2Struct(a[, vmin, ext,
. . .])

Generates a structured set of regular Carte-
sian grid starting from an octree HEXA or
QUAD mesh.

Continued on next page

4 Chapter 2. List of functions

Generator Documentation, Release 3.1

Table 3 – continued from previous page
Generator.adaptOctree(octreeHexa,
indicField)

Adapt an unstructured octree w.r.t.

Generator.expandLayer(octreeHexa[,
level, . . .])

Expand the layer of octree elements of
level l of one additional layer.

– Operations on meshes

Generator.close(array[, tol]) Close a mesh defined by an array gathering
points closer than tol.

Generator.selectInsideElts(array,
curvesList)

Select elements whose center is in the sur-
face delimited by curves.

Generator.map(array, d[, dir]) Map a distribution on a curve or a surface.
Generator.mapSplit(array, dist[, splitCrit,
. . .])

Split a curve and map a distribution on the
set of split curves.

Generator.refine(array, power[, dir]) Refine a mesh of power power along all the
directions or on a specified one.

Generator.mapCurvature(array, N, power,
dir)

Remesh with a step proportional to curva-
ture.

Generator.densify(array, h) Densify a mesh.
Generator.grow(array, vector) Grow a surface array of one layer by de-

placing points of vector.
Generator.stack(array1[, array2]) Stack two meshes (with same nixnj) into a

single mesh.
Generator.addNormalLayers(surface, dis-
trib)

Generate N layers to a surface following
normals.

Generator.TTM(array[, niter]) Smooth a mesh with Thompson-Mastin el-
liptic generator.

Generator.snapFront(meshes, surfaces[,
. . .])

Adapt meshes to a given surface (cellN de-
fined).

Generator.snapSharpEdges(meshes, sur-
faces[, . . .])

Adapt meshes to a given surface sharp
edges.

– Operations on surface meshes

Generator.fittingPlaster(contour[,
bumpFactor])

Generate a structured points cloud over a
BAR.

Generator.gapfixer(contour, cloud[,
. . .])

Fix a gap defined by a contour bar and a
point cloud representing the gap surface.

Generator.gapsmanager(components[,
mode, . . .])

Fix a gap between several component sur-
faces (list of arrays).

Continued on next page

5

Generator Documentation, Release 3.1

Table 5 – continued from previous page
Generator.mmgs(array[, ridgeAngle, hmin,
. . .])

– Information on generated meshes

Generator.barycenter(array[, weight]) Get the barycenter of an array.
Generator.bbox(arrays) Returns the bounding box of a list of ar-

rays.
Generator.bboxOfCells(array) Return the bounding box of all cells of an

array.
Generator.BB(array[, method, weight-
ing])

Return the axis-aligned or oriented bound-
ing box of an array as an array.

Generator.CEBBIntersection(array1, ar-
ray2[, tol])

Get the Cartesian Elements bounding box
intersection of 2 arrays.

Generator.bboxIntersection(array1, ar-
ray2[, . . .])

Return the intersection of bounding boxes
of 2 arrays.

Generator.checkPointInCEBB(array, P) Check if point P is in the Cartesian Ele-
ments Bounding Box of array.

Generator.getVolumeMap(array) Return the volume map in an array.
Generator.getNormalMap(array) Return the map of surface normals in an

array.
Generator.getSmoothNormalMap(array[,
niter, . . .])

Return the map of smoothed and non-
normalized surface normals in an array.

Generator.getOrthogonalityMap(array) Return the orthogonality map in an array.
Generator.getRegularityMap(array) Return the regularity map in an array.
Generator.getTriQualityMap(array) Return a TRI quality measure map in an

array.
Generator.getCellPlanarity(array) Return the cell planarity of a surface mesh

in an array.
Generator.getCircumCircleMap(array) Return the map of circum circle radius of

any cell in a TRI array.
Generator.getInCircleMap(array) Return the map of inscribed circle radius

of any cell in a TRI array.
Generator.getEdgeRatio(array[, dim]) Computes the ratio between the max and

min lengths of all the edges of cells in an
array.

Generator.getMaxLength(array[, dim]) Computes the max length of all the edges
of cells in an array.

– Operations on distributions

6 Chapter 2. List of functions

Generator Documentation, Release 3.1

Generator.enforceX(array, x0, enforcedh,
N)

Enforce a x0-centered line in a distribution
defined by an array.

Generator.enforceMoinsX(array, en-
forcedh, N)

Enforce the last X-line in a distribution
(one sided, left).

Generator.enforcePlusX(array, en-
forcedh, N)

Enforce the first X-line in a distribution de-
fined by an array.

Generator.enforceLine(array, arrayline,
. . .)

Enforce a line in a distribution.

Generator.enforcePoint(array, x0) Enforce a point in a distribution.
Generator.enforceCurvature(arrayD, ar-
rayC[, . . .])

Enforce curvature of a curve in a distribu-
tion.

Generator.addPointInDistribution(array,
ind)

Add a point in a distribution defined by ar-
ray.

7

Generator Documentation, Release 3.1

8 Chapter 2. List of functions

CHAPTER

THREE

CONTENTS

3.1 Basic grid generation

Generator.cart((xo, yo, zo), (hi, hj, hk), (ni, nj, nk))
Create a structured Cartesian mesh with ni x nj x nk points starting from point
(xo,yo,zo) and of step (hi,hj,hk).

Parameters

• (xo,yo,zo) (3-tuple of floats) – coordinates of the starting point

• (hi,hj,hk) (3-tuple of floats) – values of advancing step in the
three directions

• (ni,nj,nk) (3-tuple of integers) – number of points in each
direction

Returns a 1D, 2D or 3D structured mesh

Return type array or pyTree zone

Example of use:

• Cartesian mesh generation (array):

- cart (array) -
import Converter as C
import Generator as G
a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,10))
C.convertArrays2File(a, 'out.plt')

• Cartesian mesh generation (pyTree):

- cart (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G

(continues on next page)

9

Examples/Generator/cart.py
Examples/Generator/cartPT.py

Generator Documentation, Release 3.1

(continued from previous page)

a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,11,12))
C.convertPyTree2File(a, 'out.cgns')

Generator.cartHexa((xo, yo, zo), (hi, hj, hk), (ni, nj, nk))
Create an unstructured hexahedral mesh defined from a Cartesian grid of ni x nj x
nk points starting from point (xo,yo,zo) and of step (hi,hj,hk). Type of elements are
‘QUAD’ for 2D arrays and ‘HEXA’ for 3D arrays.

Parameters

• (xo,yo,zo) (3-tuple of floats) – coordinates of the starting point

• (hi,hj,hk) (3-tuple of floats) – values of advancing step in the
three directions

• (ni,nj,nk) (3-tuple of integers) – number of points in each
direction

Returns a 1D, 2D or 3D unstructured mesh

Return type array or pyTree zone

Example of use:

• Cartesian hexa mesh generation (array):

- cartHexa (array) -
import Generator as G
import Converter as C

a = G.cartHexa((0.,0.,0.), (0.1,0.1,0.2), (10,10,10))
C.convertArrays2File([a], 'out.plt')

• Cartesian hexa mesh generation (pyTree):

- cartHexa (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C

a = G.cartHexa((0.,0.,0.), (0.1,0.1,0.2), (10,10,1))
C.convertPyTree2File(a, 'out.cgns')

10 Chapter 3. Contents

Examples/Generator/cartHexa.py
Examples/Generator/cartHexaPT.py

Generator Documentation, Release 3.1

Generator.cartTetra((xo, yo, zo), (hi, hj, hk), (ni, nj, nk))
Create an unstructured tetrahedral mesh defined from a Cartesian grid of ni x nj x
nk points starting from point (xo,yo,zo) and of step (hi,hj,hk). Type of elements are
‘TRI’ for 2D arrays and ‘TETRA’ for 3D arrays.

Parameters

• (xo,yo,zo) (3-tuple of floats) – coordinates of the starting point

• (hi,hj,hk) (3-tuple of floats) – values of advancing step in the
three directions

• (ni,nj,nk) (3-tuple of integers) – number of points in each
direction

Returns a 1D, 2D or 3D unstructured mesh

Return type array or pyTree zone

Example of use:

• Cartesian tetra mesh generation (array):

- cartTetra (array) -
import Generator as G
import Converter as C
a = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (10,10,1))
C.convertArrays2File(a, 'out.plt')

• Cartesian tetra mesh generation (pyTree):

- cartTetra (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C

a = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (10,10,1))
C.convertPyTree2File(a, 'out.cgns')

Generator.cartPenta((xo, yo, zo), (hi, hj, hk), (ni, nj, nk))
Create an unstructured prismatic mesh defined from a regular Cartesian mesh. The
initial Cartesian mesh is defined by ni x nj x nk points starting from point (xo,yo,zo)
and of step (hi,hj,hk). Type of elements is ‘PENTA’.

Parameters

• (xo,yo,zo) (3-tuple of floats) – coordinates of the starting point

• (hi,hj,hk) (3-tuple of floats) – values of advancing step in the
three directions

3.1. Basic grid generation 11

Examples/Generator/cartTetra.py
Examples/Generator/cartTetraPT.py

Generator Documentation, Release 3.1

• (ni,nj,nk) (3-tuple of integers) – number of points in each
direction

Returns a 1D, 2D or 3D unstructured mesh

Return type array or pyTree zone

Example of use:

• Cartesian penta mesh generation (array):

- cartPenta (array) -
import Generator as G
import Converter as C
a = G.cartPenta((0.,0.,0.), (0.1,0.1,0.2), (10,10,10))
C.convertArrays2File([a], "out.plt")

• Cartesian penta mesh generation (pyTree):

- cartPenta (pyTree)-
import Generator.PyTree as G
import Converter.PyTree as C

a = G.cartPenta((0.,0.,0.), (0.1,0.1,0.2), (10,10,10))
C.convertPyTree2File(a, 'out.cgns')

Generator.cartPyra((xo, yo, zo), (hi, hj, hk), (ni, nj, nk))
Create an unstructured pyramidal mesh defined from a regular Cartesian mesh. The
initial Cartesian mesh is defined by ni x nj x nk points starting from point (xo,yo,zo)
and of step (hi,hj,hk). Type of elements is ‘PYRA’.

Parameters

• (xo,yo,zo) (3-tuple of floats) – coordinates of the starting point

• (hi,hj,hk) (3-tuple of floats) – values of advancing step in the
three directions

• (ni,nj,nk) (3-tuple of integers) – number of points in each
direction

Returns a 1D, 2D or 3D unstructured mesh

Return type array or pyTree zone

Example of use:

• Cartesian pyra mesh generation (array):

12 Chapter 3. Contents

Examples/Generator/cartPenta.py
Examples/Generator/cartPentaPT.py
Examples/Generator/cartPyra.py

Generator Documentation, Release 3.1

- cartHexa (array) -
import Generator as G
import Converter as C

a = G.cartPyra((0.,0.,0.), (1,1,1), (20,20,20))
C.convertArrays2File(a, 'out.tp')

• Cartesian pyra mesh generation (pyTree):

- cartPyra (pyTree)-
import Generator.PyTree as G
import Converter.PyTree as C

a = G.cartPyra((0.,0.,0.), (0.1,0.1,0.2), (10,10,10))
C.convertPyTree2File(a, 'out.cgns')

Generator.cartNGon((xo, yo, zo), (hi, hj, hk), (ni, nj, nk))
Create a NGON mesh defined from a regular Cartesian mesh. The initial Cartesian
mesh is defined by ni x nj x nk points starting from point (xo,yo,zo) and of step
(hi,hj,hk). Type of elements is ‘NGON’.

Parameters

• (xo,yo,zo) (3-tuple of floats) – coordinates of the starting point

• (hi,hj,hk) (3-tuple of floats) – values of advancing step in the
three directions

• (ni,nj,nk) (3-tuple of integers) – number of points in each
direction

Returns a 1D, 2D or 3D unstructured mesh

Return type array or pyTree zone

Example of use:

• Cartesian ngon mesh generation (array):

- cartNGon (array) -
import Generator as G
import Converter as C

a = G.cartNGon((0.,0.,0.), (0.1,0.1,0.2), (20,20,20))
C.convertArrays2File(a, 'out.plt')

3.1. Basic grid generation 13

Examples/Generator/cartPyraPT.py
Examples/Generator/cartNGon.py

Generator Documentation, Release 3.1

• Cartesian ngon mesh generation (pyTree):

- cartNGon (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C

a = G.cartNGon((0.,0.,0.), (0.1,0.1,0.2), (2,2,2))
C.convertPyTree2File(a, 'out.cgns')

Generator.cylinder((xo, yo, zo), R1, R2, tetas, tetae, H, (ni, nj, nk))
Create a regular cylindrical grid (or a portion of cylinder between tetas and tetae)
with ni x nj x nk points, of center-bottom point (xo,yo,zo), of inner radius R1, outer
radius R2 and height H. For a direct mesh, use tetae < tetas.

Parameters

• (xo,yo,zo) (3-tuple of floats) – coordinates of the starting point

• R1 (float) – value of inner radius

• R2 (float) – value of outer radius

• tetas (float) – start angle (in degree)

• tetae (float) – end angle (in degree)

• (ni,nj,nk) (3-tuple of integers) – number of points in each
direction

Returns a 3D structured mesh

Return type array or pyTree zone

Example of use:

• Regular cylinder mesh generation (array):

- cylinder (array) -
import Generator as G
import Converter as C
a = G.cylinder((0.,0.,0.), 0.5, 1., 360., 0., 10., (50,50,30))
C.convertArrays2File([a], "out.plt")

• Regular cylinder mesh generation (pyTree):

- cylinder (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G

(continues on next page)

14 Chapter 3. Contents

Examples/Generator/cartNGonPT.py
Examples/Generator/cylinder.py
Examples/Generator/cylinderPT.py

Generator Documentation, Release 3.1

(continued from previous page)

a = G.cylinder((0.,0.,0.), 0.5, 1., 360., 0., 10., (50,50,30))
C.convertPyTree2File(a, 'out.cgns')

Generator.cylinder2((xo, yo, zo), R1, R2, tetas, tetae, H, arrayR, arrayTeta, arrayZ)
Create an irregular cylindrical grid (or a portion of cylinder between tetas and tetae)
with ni x nj x nk points, of center-bottom point (xo,yo,zo), of inner radius R1, outer
radius R2, height H and with distributions in r, teta, z. Distributions are arrays
defining 1D meshes (x and i varying) giving a distribution in [0,1]. Their number of
points gives ni, nj, nk.

Parameters

• (xo,yo,zo) (3-tuple of floats) – coordinates of the starting point

• R1 (float) – value of inner radius

• R2 (float) – value of outer radius

• tetas (float) – start angle (in degree)

• tetae (float) – end angle (in degree)

• H (float) – value of cylinder height

• arrayR (array) – distribution along radius

• arrayTeta (array) – distribution along azimuth

• arrayZ (array) – distribution along height

Returns a 3D structured mesh

Return type array or pyTree zone

Example of use:

• Irregular cylinder mesh generation (array):

- cylinder2 (array) -
import Converter as C
import Generator as G
r = G.cart((0.,0.,0.), (0.1, 1., 1.), (11, 1, 1))
teta = G.cart((0.,0.,0.), (0.1, 1., 1.), (11, 1, 1))
z = G.cart((0.,0.,0.), (0.1, 1., 1.), (11, 1, 1))
cyl = G.cylinder2((0.,0.,0.), 0.5, 1., 360., 0., 10., r, teta, z)
C.convertArrays2File([cyl], "out.plt")

• Irregular cylinder mesh generation (pyTree):

3.1. Basic grid generation 15

Examples/Generator/cylinder2.py
Examples/Generator/cylinder2PT.py

Generator Documentation, Release 3.1

- cylinder2 (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G

r = G.cart((0.,0.,0.), (0.1, 1., 1.), (11, 1, 1))
teta = G.cart((0.,0.,0.), (0.1, 1., 1.), (11, 1, 1))
z = G.cart((0.,0.,0.), (0.1, 1., 1.), (11, 1, 1))

cyl = G.cylinder2((0.,0.,0.), 0.5, 1., 360., 0., 10., r, teta, z)
C.convertPyTree2File(cyl, 'out.cgns')

Generator.cylinder3(a, tetas, tetae, arrayTeta)
Create an irregular cylindrical grid (or a portion of cylinder between tetas and tetae)
from a xz plane mesh defined by a and a teta distribution defined by arrayTeta.

Parameters

• a ([array, list of arrays] or [zone, list of zones, base,
pyTree]) – definition of the xz plane mesh

• tetas (float) – start angle (in degree)

• tetae (float) – end angle (in degree)

• arrayTeta (array) – distribution along azimuth

Returns a 3D structured mesh

Return type array or pyTree zone

Example of use:

• Irregular cylinder mesh generation from a xz plane (array):

- cylinder3 (array) -
import Generator as G
import Converter as C
teta = G.cart((0.,0.,0.), (0.1, 1., 1.), (11, 1, 1))
xz = G.cart((0.1,0.,0.), (0.1,1.,0.2), (20, 1, 30))
cyl = G.cylinder3(xz, 0., 90., teta)
C.convertArrays2File([cyl], 'out.plt')

• Irregular cylinder mesh generation from a xz plane (pyTree):

- cylinder3 (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G

(continues on next page)

16 Chapter 3. Contents

Examples/Generator/cylinder3.py
Examples/Generator/cylinder3PT.py

Generator Documentation, Release 3.1

(continued from previous page)

teta = G.cart((0.,0.,0.), (0.1, 1., 1.), (11, 1, 1))
xz = G.cart((0.1,0.,0.), (0.1,1.,0.2), (20, 1, 30))
cyl = G.cylinder3(xz, 0., 90., teta)
C.convertPyTree2File(cyl, 'out.cgns')

3.2 General purpose grid generator

Generator.delaunay(a, tol=1.e-10, keepBB=0)
Create a 2D Delaunay type mesh from an array. The array can be a 2D structured
array, or an unstructured array of type ‘NODE’, ‘TRI’ or ‘QUAD’. Tol is a geometric
tolerance. Points nearer than tol are merged. If keepBB is set to 1, the bounding box
is kept in the final triangulation.

Parameters

• a ([array] or [zone]) – structured or unstructured 2D mesh

• tol (float) – geometric tolerance

• keepBB (integer (0 or 1)) – keep bounding box in result?

Returns a 2D unstructured mesh

Return type Identical to a

Example of use:

• 2D Delaunay mesh generation (array):

- delaunay (array) -
import Generator as G
import Converter as C
ni = 11; nj = 11; nk = 1
hi = 1./(ni-1); hj = 1./(nj-1); hk = 1.
a = G.cart((0.,0.,0.), (hi,hj,hk), (ni,nj,nk))
b = G.delaunay(a)
C.convertArrays2File([a,b], "out.plt")

• 2D Delaunay mesh generation (pyTree):

- delaunay (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G

ni = 11; nj = 11; nk = 1

(continues on next page)

3.2. General purpose grid generator 17

Examples/Generator/delaunay.py
Examples/Generator/delaunayPT.py

Generator Documentation, Release 3.1

(continued from previous page)

hi = 1./(ni-1); hj = 1./(nj-1); hk = 1.
a = G.cart((0.,0.,0.), (hi,hj,hk), (ni,nj,nk))
b = G.delaunay(a); b[0] = 'delaunay'
t = C.newPyTree(['Base', 2, a,b])
C.convertPyTree2File(t, 'out.cgns')

Generator.constrainedDelaunay(c, tol=1.e-10, keepBB=0)
Create a constrained Delaunay triangulation of the convex hull of a contour c. Con-
tour must be a BAR-array and must be in the plane (x,y). Tol is a geometric tolerance.
Points nearer than tol are merged. If keepBB is set to 1, the bounding box is kept in
the final triangulation.

Parameters

• c (BAR-array) – contour in xy plane

• tol (float) – geometric tolerance

• keepBB (integer (0 or 1)) – keep bounding box in result?

Returns a 2D unstructured mesh

Return type Identical to a

Example of use:

• 2D Delaunay mesh generation from a contour (array):

- constrainedDelaunay (array) -
import Converter as C
import Generator as G
import Transform as T
import Geom as D

A = D.text1D('CASSIOPEE')
A = C.convertArray2Tetra(A); a = T.join(A)
Triangulation respecting given contour
tri = G.constrainedDelaunay(a)
C.convertArrays2File([a,tri], "out.plt")

• 2D Delaunay mesh generation from a contour (pyTree):

- constrainedDelaunay (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Geom.PyTree as D

(continues on next page)

18 Chapter 3. Contents

Examples/Generator/constrainedDelaunay.py
Examples/Generator/constrainedDelaunayPT.py

Generator Documentation, Release 3.1

(continued from previous page)

import Transform.PyTree as T

A = D.text1D('CASSIOPEE')
A = C.convertArray2Tetra(A); a = T.join(A)
Triangulation respecting given contour
tri = G.constrainedDelaunay(a)
C.convertPyTree2File(tri, 'out.cgns')

Generator.checkDelaunay(c, tri)
Check if the Delaunay triangulation defined in tri is inside the contour c.

Parameters

• c (BAR-array) – contour in xy plane

• tri (array or pyTree) – 2D Delaunay triangulation mesh

Returns contour

Return type BAR-array

Example of use:

• Check Delaunay triangulation wrt. contour (array):

- checkDelaunay (array) -
import Converter as C
import Generator as G
import Transform as T
import Geom as D

A = D.text1D('CASSIOPEE')
A = C.convertArray2Tetra(A); a = T.join(A)
Triangulation respecting given contour
tri = G.constrainedDelaunay(a)
res = G.checkDelaunay(a, tri)
C.convertArrays2File([res], "out.plt")

• Check Delaunay triangulation wrt. contour (pyTree):

- checkDelaunay (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Geom.PyTree as D
import Transform.PyTree as T

(continues on next page)

3.2. General purpose grid generator 19

Examples/Generator/checkDelaunay.py
Examples/Generator/checkDelaunayPT.py

Generator Documentation, Release 3.1

(continued from previous page)

A = D.text1D('CASSIOPEE')
A = C.convertArray2Tetra(A); a = T.join(A)
Triangulation respecting given contour
tri = G.constrainedDelaunay(a)
res = G.checkDelaunay(a, tri)
C.convertPyTree2File(res, "out.cgns")

Generator.T3mesher2D(a, triangulateOnly=0, grading=1.2, metricInterpType=0)
Creates a 2D Delaunay mesh given a BAR defined in a. If triangulateOnly=1 then
only points of a are triangulated, if triangulateOnly=0, then interior points are in-
serted.

The grading parameter allows to control the growth ratio of the mesh metric : a value
greater(lesser) than 1. tends to produce a coarser (finer) mesh in the region far from
the boundaries. A value equal to 1. provides a uniform mesh over the domain. This
grading is related to the metric field, it is not the size ratio between two adjacent
edges or triangles.

The metricInterpType parameter controls the metrics interpolation type: either linear
or geometric. A geometric metric interpolation tends to promote smaller sizes.

Parameters

• c ([array, list of arrays] or [pyTree, base, zone, list
of zones]) – BAR-contour (soup of conformal edges defining an
enclosed 2D-domain, can be non-manifold, i.e. having inner edges
or subdomains)

• triangulateOnly (integer (0 or 1)) – insertion or not of interior
points for the triangulation

• grading (float (strictly positive value)) – metric growth ratio

• metricInterpType (integer (0 or 1)) – metric interpolation type,
linear(0) or geometric(1)

Returns 2D mesh

Return type Identical to input

Example of use:

• 2D Delaunay mesh generation from a BAR (array):

- T3mesher2D (array) -
import Generator as G
import Converter as C
import Geom as D

(continues on next page)

20 Chapter 3. Contents

Examples/Generator/T3mesher2D.py

Generator Documentation, Release 3.1

(continued from previous page)

a = D.circle((0,0,0), 1, N=50)
a = C.convertArray2Tetra(a)
a = G.close(a)
b = G.T3mesher2D(a, triangulateOnly=0, grading=1.2, metricInterpType=0) #␣
→˓linear metric interpolation
C.convertArrays2File([a,b], 'outL.plt')

b = G.T3mesher2D(a, triangulateOnly=0, grading=1.2, metricInterpType=1) #␣
→˓geometric metric interpolation
C.convertArrays2File([a,b], 'outG.plt')

• 2D Delaunay mesh generation from a BAR (pyTree):

- T3mesher2D (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

a = D.circle((0,0,0), 1, N=50)
a = C.convertArray2Tetra(a)
a = G.close(a)

b = G.T3mesher2D(a, triangulateOnly=0, grading=1.2, metricInterpType=0) #␣
→˓linear metric interpolation
C.convertPyTree2File(b, 'outL.cgns')

b = G.T3mesher2D(a, triangulateOnly=0, grading=1.2, metricInterpType=1) #␣
→˓geometric metric interpolation
C.convertPyTree2File(b, 'outG.cgns')

Generator.tetraMesher(a, maxh=-1., grading=0.4, algo=1, optionString="")
Create a 3D tetra mesh given a TRI surface defined in a. If the TRI surface has
external normals, tetras are filled inside the surface. If algo=0, netgen is used, if
algo=1, tetgen is used.

Parameters

• c ([array, list of arrays] or [zone, list of zones, base,
pyTree]) – triangulated surface mesh

• maxh (float) – max cell size of generated mesh [tetgen]

• grading (float) – max adjacent cell ratio [tetgen]

3.2. General purpose grid generator 21

Examples/Generator/T3mesher2DPT.py

Generator Documentation, Release 3.1

• optionString (string) – string of options identical to tetgen [tet-
gen]

• algo (integer (0 or 1)) – choice parameter between netgen and
tetgen

Returns 3D mesh

Return type [array] or [pyTree zone]

Example of use:

• 3D tetra mesh generation (array):

- tetraMesher (array) -
import Generator as G
import Converter as C
import Post as P
import Transform as T

a = G.cart((0,0,0), (1,1,1), (3,3,3))
ext = P.exteriorFaces(a)
ext = C.convertArray2Tetra(ext)
ext = G.close(ext)
ext = T.reorder(ext, (-1,))
m = G.tetraMesher(ext, algo=1)
C.convertArrays2File(m, 'out.plt')

• 3D tetra mesh generation (pyTree):

- tetraMesher (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Post.PyTree as P
import Transform.PyTree as T

a = G.cart((0,0,0), (1,1,1), (3,3,3))
ext = P.exteriorFaces(a)
ext = C.convertArray2Tetra(ext)
ext = G.close(ext)
ext = T.reorder(ext, (-1,))
m = G.tetraMesher(ext, algo=1)
C.convertPyTree2File(m, 'out.cgns')

Generator.TFI([imin, imax, jmin, jmax, kmin, kmax])
Generate a mesh by transfinite interpolation (TFI). Generated mesh can be 2D or
3D structured, or unstructured TRI or PENTA mesh. Warning: the boundaries can

22 Chapter 3. Contents

Examples/Generator/tetraMesher.py
Examples/Generator/tetraMesherPT.py

Generator Documentation, Release 3.1

be in a different order from the examples below, except for the PENTA TFI meshes.
2D structured mesh is built from imin, imax, jmin, jmax boundaries. 3D structured
mesh is built from imin, imax, jmin, jmax, kmin, kmax boundaries. Dimensions
must be equal for each pair (imin,imax), (jmin,jmax). . . TRI mesh is built from
imin, jmin, diag boundaries. Each boundary is a structured array with the same
dimension. PENTA mesh is built from Tmin, Tmax triangles boundary and imin,
imax, diag boundaries. Tmin, Tmax must be structured triangles of dimension nxn.
imin, jmin, diag must be structured n*p arrays.

Parameters

• imin (array) – I-direction minimum boundary

• imax (array) – I-direction maximum boundary

• jmin (array) – J-direction minimum boundary

• jmax (array) – J-direction maximum boundary

• kmin (array) – K-direction minimum boundary

• kmax (array) – K-direction maximum boundary

• diag (array) – third direction boundary for TRI or PENTA meshes

Returns 2D or 3D mesh

Return type array or pyTree

Example of use:

• TFI mesh generation (array):

- TFI 2D structured (array)
- TFI 3D structured (array)
- TFI TRI (array)
import Converter as C
import Generator as G
import Geom as D
import Transform as T

#------------------
TFI 2D structured
#------------------
P0 = (0,0,0); P1 = (5,0,0); P2 = (0,7,0); P3 = (5,7,0)

Geometrie
d1 = D.line(P0, P1); d2 = D.line(P2, P3)

pts = C.array('x,y,z',5,1,1)
x = pts[1][0]; y = pts[1][1]; z = pts[1][2]

(continues on next page)

3.2. General purpose grid generator 23

Examples/Generator/TFI.py

Generator Documentation, Release 3.1

(continued from previous page)

x[0] = 0.; y[0] = 0.; z[0] = 0.
x[1] =-2.; y[1] = 2.; z[1] = 0.
x[2] =-3.; y[2] = 3.; z[2] = 0.
x[3] = 2.; y[3] = 5.; z[3] = 0.
x[4] = 0.; y[4] = 7.; z[4] = 0.
b1 = D.bezier(pts)

pts = C.array('x,y,z',5,1,1)
x = pts[1][0]; y = pts[1][1]; z = pts[1][2]
x[0] = 5.; y[0] = 0.; z[0] = 0.
x[1] = 3.; y[1] = 2.; z[1] = 0.
x[2] = 2.; y[2] = 3.; z[2] = 0.
x[3] = 6.; y[3] = 5.; z[3] = 0.
x[4] = 5.; y[4] = 7.; z[4] = 0.
b2 = D.bezier(pts)

C.convertArrays2File([d1, d2, b1, b2], "geom.plt")

Regular discretisation of each line
Ni = 20
Nj = 10
r = G.cart((0,0,0), (1./(Ni-1),1,1), (Ni,1,1))
q = G.cart((0,0,0), (1./(Nj-1),1,1), (Nj,1,1))
r1 = G.map(d1, r)
r2 = G.map(d2, r)
r3 = G.map(b1, q)
r4 = G.map(b2, q)

TFI 2D
m = G.TFI([r1, r2, r3, r4])
C.convertArrays2File([r1,r2,r3,r4,m], 'tfi2d.plt')

#------------------
TFI 3D structured
#------------------
xo = 0.; yo = 0.; zo = 0.
nx = 21; ny = 21; nz = 21
hx = 1./(nx-1); hy = 1./(ny-1); hz = 1./(nz-1)

z = cste
fzmin = G.cart((xo,yo,zo), (hx,hy,1.), (nx,ny,1))
fzmax = T.translate(fzmin, (0.,0.,1.))

x = cste
fxmin = G.cart((xo,yo,zo),(1,hy,hz),(1,ny,nz))

(continues on next page)

24 Chapter 3. Contents

Generator Documentation, Release 3.1

(continued from previous page)

fxmin = T.reorder(fxmin,(3,1,2))
fxmax = T.translate(fxmin, (1.,0.,0.))

y = cste
fymin = G.cart((xo,yo,zo),(hx,1.,hz),(nx,1,nz))
fymin = T.reorder(fymin,(1,3,2))
fymax = T.translate(fymin, (0.,1.,0.))

r = [fxmin,fxmax,fymin,fymax,fzmin,fzmax]
m = G.TFI(r)
C.convertArrays2File(r+[m], 'tfi3d.plt')

#---------
TFI TRI
#---------
l1 = D.line((0,0,0),(0,1,0), 15)
l2 = D.line((0,0,0),(1,0,0), 15)
l3 = D.line((1,0,0),(0,1,0), 15)
tri = G.TFI([l1,l2,l3])
C.convertArrays2File([tri], 'tfitri.plt')

• TFI mesh generation (pyTree):

- TFI (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Geom.PyTree as D

Geometry
P0 = (0,0,0); P1 = (5,0,0); P2 = (0,7,0); P3 = (5,7,0)
Ni = 20; Nj = 10
d1 = D.line(P0, P1,Ni); d2 = D.line(P2, P3,Ni)
d3 = D.line(P0, P2,Nj); d4 = D.line(P1, P3,Nj)
m = G.TFI([d1, d2, d3, d4])
C.convertPyTree2File(m, 'out.cgns')

Generator.TFITri(a1, a2, a3)
Generate three structured meshes by transfinite interpolation around three given
curves a1, a2, a3. N3-N2+N1 must be odd.

Parameters

• a1 (array) – first curve

• a2 (array) – second curve

3.2. General purpose grid generator 25

Examples/Generator/TFIPT.py

Generator Documentation, Release 3.1

• a3 (array) – third curve

Returns 2D structured mesh

Return type array or pyTree

Example of use:

• TFI structured mesh generation between three curves (array):

- TFITri (array)
import Converter as C
import Generator as G
import Geom as D

P0 = (0,0,0); P1 = (5,0,0); P2 = (1,7,0)

3 curves (dont need to be lines)
d1 = D.line(P0, P1, N=11)
d2 = D.line(P1, P2, N=11)
d3 = D.line(P0, P2, N=11)
r = G.TFITri(d1, d2, d3)
C.convertArrays2File(r, 'out.plt')

• TFI structured mesh generation between three curves (pyTree):

- TFITri (pyTree)
import Converter.PyTree as C
import Generator.PyTree as G
import Geom.PyTree as D

P0 = (0,0,0); P1 = (5,0,0); P2 = (1,7,0)

3 curves (dont need to be lines)
d1 = D.line(P0, P1, N=11)
d2 = D.line(P1, P2, N=11)
d3 = D.line(P0, P2, N=11)
r = G.TFITri(d1, d2, d3)
C.convertPyTree2File(r, 'out.cgns')

Generator.TFIO(a)
Generate five meshes by transfinite interpolation around one given curves a. The
number of points of a must be odd.

Parameters a (array) – curve

Returns 2D structured mesh (butterfly O-H topology)

26 Chapter 3. Contents

Examples/Generator/TFITri.py
Examples/Generator/TFITriPT.py

Generator Documentation, Release 3.1

Return type array or pyTree

Example of use:

• Butterfly structured mesh generation by TFI (array):

- TFIO (array) -
import Converter as C
import Generator as G
import Geom as D

a = D.circle((0,0,0), 1., N=41)
r = G.TFIO(a)
C.convertArrays2File(r, 'out.plt')

• Butterfly structured mesh generation by TFI (pyTree):

- TFIO (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Geom.PyTree as D

a = D.circle((0,0,0), 1., N=41)
r = G.TFIO(a)
C.convertPyTree2File(r, 'out.cgns')

Generator.TFIHalfO(a1, a2)
Generate four meshes by transfinite interpolation around two given curves a1 and a2
forming a half-O. N1, the number of points of a1 and N2, the number of points of a2
must be odd.

Parameters

• a1 (array or Zone) – first curve

• a2 (array or Zone) – second curve

Returns 2D structured mesh (half butterfly C-H topology)

Return type array or Zone

Example of use:

• Half-Butterfly structured mesh generation by TFI (array):

- TFIHalfO (array) -
import Converter as C
import Generator as G

(continues on next page)

3.2. General purpose grid generator 27

Examples/Generator/TFIO.py
Examples/Generator/TFIOPT.py
Examples/Generator/TFIHalfO.py

Generator Documentation, Release 3.1

(continued from previous page)

import Geom as D

a1 = D.circle((0,0,0), 1., tetas=0, tetae=180., N=41)
a2 = D.line((-1,0,0),(1,0,0), N=21)
r = G.TFIHalfO(a1, a2)
C.convertArrays2File(r, 'out.plt')

• Half-Butterfly structured mesh generation by TFI (pyTree):

- TFIHalfO (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Geom.PyTree as D

a1 = D.circle((0,0,0), 1., tetas=0, tetae=180., N=41)
a2 = D.line((-1,0,0),(1,0,0), N=21)
r = G.TFIHalfO(a1, a2)
C.convertPyTree2File(r, 'out.cgns')

Generator.TFIMono(a1, a2)
Generate one mesh by transfinite interpolation around two given curves a1 and a2
forming a half-O. N1-N2 must be even.

Parameters

• a1 (array) – first curve

• a2 (array) – second curve

Returns 2D structured mesh

Return type array or pyTree

Example of use:

• TFI structured mesh generation between two curves (array):

- TFIMono (array) -
import Converter as C
import Generator as G
import Geom as D

a1 = D.circle((0,0,0), 1., tetas=0, tetae=180., N=41)
a2 = D.line((-1,0,0),(1,0,0), N=21)
r = G.TFIMono(a1, a2)
C.convertArrays2File(r, 'out.plt')

28 Chapter 3. Contents

Examples/Generator/TFIHalfOPT.py
Examples/Generator/TFIMono.py

Generator Documentation, Release 3.1

• TFI structured mesh generation between two curves (pyTree):

- TFIMono (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Geom.PyTree as D

a1 = D.circle((0,0,0), 1., tetas=0, tetae=180., N=41)
a2 = D.line((-1,0,0),(1,0,0), N=21)
r = G.TFIMono(a1, a2)
C.convertPyTree2File(r, 'out.cgns')

Generator.hyper2D(line, distrib, "C")
Generate an hyperbolic mesh (2D) of “C” or “O” type from a from a line defined by
line and from a distribution defined by distrib. The resulting mesh is nearly orthog-
onal.

Parameters

• line (array) – starting line of the hyperbolic mesh

• distrib (array) – distribution orthogonal to the line

Returns 2D structured mesh

Return type array or pyTree

Example of use:

• Hyperbolic structured mesh generation from a line (array):

- hyper2D (array) -
import Geom as D
import Generator as G
import Converter as C

msh = D.naca(12., 5001)

Distribution
Ni = 300; Nj = 50
distrib = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,1))
a = G.hyper2D(msh, distrib, "C")
C.convertArrays2File([a], 'out.plt')

• Hyperbolic structured mesh generation from a line (pyTree):

3.2. General purpose grid generator 29

Examples/Generator/TFIMonoPT.py
Examples/Generator/hyper2d.py
Examples/Generator/hyper2dPT.py

Generator Documentation, Release 3.1

- hyper2D (pyTree) -
import Geom.PyTree as D
import Generator.PyTree as G
import Converter.PyTree as C

line = D.naca(12., 5001)
Distribution
Ni = 300; Nj = 50
distrib = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,1))

a = G.hyper2D(line, distrib, "C")
C.convertPyTree2File(a, 'out.cgns')

Generator.PolyLine.polyLineMesher(a, h, hf, density)
Generate a 2D mesh around a 2D polyline where a is the input polyline (BAR-array),
h is the height of the mesh, hf is the height of the first cell and density is the number
of points per unity of length. In the ‘array’ version, it returns a list where B[0] is the
list of generated meshes, B[1] is the list of wall boundaries, B[2] is the list of overlap
boundaries, B[3] is h, B[4] is density (eventually modified by the mesher). In the
pyTree version, it returns a list [zones,hs,densities], where zones is a list of zones
of a CGNS python tree, containing the blocks, wall boundaries, match and overlap
boundaries; hs is the list of heights (modified if necessary), and densities the list of
densities (also modified if necessary).

Parameters

• a (BAR-array) – input polyline

• h (float) – height of the mesh

• hf (float) – first cell size

• density (integer) – number of points per unity of length

Returns 2D structured mesh

Return type array or pyTree

Example of use:

• Structured mesh generation from a polyline (array):

- polyLineMesher (array) -
import Converter as C
import Generator.PolyLine as GP
import Generator as G
import Transform as T

(continues on next page)

30 Chapter 3. Contents

Examples/Generator/polyLineMesher.py

Generator Documentation, Release 3.1

(continued from previous page)

Read a 2D geometry created with tecplot
a = C.convertFile2Arrays('fusee.plt')
a = G.close(a,1e-2); a = T.reorder(a,(-1,2,3))
C.convertArrays2File(a, 'input.plt')

Data
h = 0.02; hf = 0.0001; density = 500

Per families
coords = []; walls = []
for i in a:

b = GP.polyLineMesher(i, h, hf, density)
coords.append(b[0])
walls.append(b[1])

Flat
meshes = []
for i in coords: meshes = meshes + i

C.convertArrays2File(meshes, 'out.plt')

• Structured mesh generation from a polyline (pyTree):

- polyLineMesher (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Transform.PyTree as T

tb = C.convertFile2PyTree('fusee.plt')
tb = G.close(tb,1e-2); tb = T.reorder(tb,(-1,2,3))
h = 0.02; hf = 0.0001; density = 500

res = G.polyLineMesher(tb[2][1][2][0], h, hf, density)
zones = res[0]; h = res[1]; density = res[2]
t = C.newPyTree(['PolyC1']); t[2][1][2] += zones
C.convertPyTree2File(t, 'out.cgns')

Generator.PolyC1.polyC1Mesher(A, h, hf, density, splitCrit=10.)
Generate a 2D mesh around a 2D polyC1 curve where A is a list of i-arrays each repre-
senting a C1 curve. All i-arrays put together must represent a polyC1 curve. SplitCrit
is a curvature radius triggering split. Other arguments are similar to polyLineMesher.
The function return is also similar to polyLineMesher.

Parameters

3.2. General purpose grid generator 31

Examples/Generator/polyLineMesherPT.py

Generator Documentation, Release 3.1

• A (list of arrays) – list of 1D curves

• h (float) – height of the mesh

• hf (float) – first cell size

• density (integer) – number of points per unity of length

• splitCrit (float) – threshold curvature radius below which the
initial curve is split

Returns 2D structured mesh

Return type array or pyTree

Example of use:

• Structured mesh generation from a C1 line (array):

- polyC1Mesher (array) -
import Converter as C
import Generator.PolyC1 as GP
import Generator as G
import Transform as T

Read geometry from svg file
a = C.convertFile2Arrays('Data/curve.svg', density=1)[0]
a = T.homothety(a,(0,0,0),0.01)
a = T.reorder(a, (1,2,3))

h = 0.2; hp = 0.001; density = 10.; splitCrit = 2.
m = GP.polyC1Mesher(a, h, hp, density, splitCrit)

for i in m[0]:
v = G.getVolumeMap(i)
min = C.getMinValue(v, 'vol')
if min <= 0:

print('negative volume detected.')

C.convertArrays2File(m[0], 'out.plt')

• Structured mesh generation from a C1 line (pyTree):

- polyC1Mesher (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Transform.PyTree as T

tb = C.convertFile2PyTree('curve1.svg', nptsCurve=100, nptsLine=400)

(continues on next page)

32 Chapter 3. Contents

Examples/Generator/polyC1Mesher.py
Examples/Generator/polyC1MesherPT.py

Generator Documentation, Release 3.1

(continued from previous page)

z = T.homothety(tb[2][1][2][0], (0.,0.,0.), 0.01)
z = T.reorder(z, (-1,2,3))
h = 0.1; hf = 0.001; density = 100; splitCrit = 10.
res = G.polyC1Mesher(z, h, hf, density, splitCrit)
zones = res[0]; h = res[1]; density = res[2]
t = C.newPyTree(['Base']); t[2][1][2] += zones
C.convertPyTree2File(t, 'out.cgns')

Generator.pointedHat(a, (x, y, z))
Create a structured mesh from a curve defined by a i-array and a point. For the
pyTree version: if a contains a solution, it is not taken into account in b.

Parameters

• a (array) – closed 1D curve

• (x,y,z) (3-tuple of floats) – coordinates of point

Returns 2D structured mesh

Return type array or pyTree

Example of use:

• 2D closing mesh generation from a closed curve and a point (array):

- pointedHat (array) -
import Geom as D
import Generator as G
import Converter as C
c = D.circle((0,0,0), 1., 360., 0., 100)
surf = G.pointedHat(c,(0.,0.,1.))
C.convertArrays2File([surf], 'out.plt')

• 2D closing mesh generation from a closed curve and a point (pyTree):

- pointedHat (pyTree) -
import Geom.PyTree as D
import Generator.PyTree as G
import Converter.PyTree as C
c = D.circle((0,0,0), 1., 360., 0., 100)
surf = G.pointedHat(c,(0.,0.,1.))
t = C.newPyTree(['Base']); t[2][1][2].append(surf)
C.convertPyTree2File(t, 'out.cgns')

3.2. General purpose grid generator 33

Examples/Generator/pointedHat.py
Examples/Generator/pointedHatPT.py

Generator Documentation, Release 3.1

Generator.stitchedHat(a, (offx, offy, offz), tol=1.e-6, tol2=1.e-5)
Create a stitched mesh from a curve defined by a i-array. The surface is stitched in
the middle. Tol is the accuracy of the search, tol2 is a merging tolerance and offx,
offy, off z an optional offset. For the pyTree version: if a contains a solution, it is not
taken into account in b.

Parameters

• a (array) – closed 1D curve

• (offx,offy,offz) (3-tuple of floats) – coordinates of offset vec-
tor

• tol (float) – accuracy of search

• tol2 (float) – merging tolerance

Returns 2D structured mesh

Return type array or pyTree

Example of use:

• 2D stitched mesh generation from a closed curve (array):

- stitchedHat (array) -
import Geom as D
import Generator as G
import Transform as T
import Converter as C

c = D.circle((0,0,0), 1., 360., 0., 100)
c = T.contract(c, (0,0,0), (0,1,0), (0,0,1), 0.1)
c = G.stitchedHat(c, (0,0,0), 1.e-3)
C.convertArrays2File([c], 'out.plt')

• 2D stitched mesh generation from a closed curve (pyTree):

- stitchedHat (pyTree) -
import Geom.PyTree as D
import Generator.PyTree as G
import Transform.PyTree as T
import Converter.PyTree as C
c = D.circle((0,0,0), 1., 360., 0., 100)
c = T.contract(c, (0,0,0), (0,1,0), (0,0,1), 0.1)
c = G.stitchedHat(c, (0,0,0), 1.e-4)
C.convertPyTree2File(c, 'out.cgns')

34 Chapter 3. Contents

Examples/Generator/stitchedHat.py
Examples/Generator/stitchedHatPT.py

Generator Documentation, Release 3.1

Generator.surfaceWalk(surfaces, c, dj, constraints=[], niter=0, alphaRef=180.,
check=0, toldist=1.e-6)

Surface extrusion starting from a curve, resulting into a surface mesh. dj is the
distribution of points in the extrusion direction starting from c, niter the number of
smoothing iterations. check=1 means that the extrusion stops at the layer before
cells intersect alphaRef is the deviation angle wrt 180 degrees enabling to stop the
extrusion before it crosses a sharp edge on the surface. toldist is a tolerance below
which points are considered matching. Constraints can be set as 1D zones.

Parameters

• surfaces (list of arrays) – list of surfaces

• c (array or pyTree) – starting curve for the extrusion

• dj (1D-array) – distribution of points for the extrusion

• constraints (list of arrays) – 1D curves constraining the extru-
sion

• niter (integer) – number of smoothing iterations

• alphaRef (float) – deviation angle (in degrees) stopping the ex-
trusion

• check (integer) – activation key for stopping the extrusion (0 or
1)

• toldist (float) – merging points tolerance

Returns 2D structured mesh

Return type array or pyTree

Example of use:

• 2D mesh extrusion from a curve and walking on a surface (array):

- surfaceWalk (array)
import Converter as C
import Geom as D
import Transform as T
import Generator as G

User definition of parametric curve
def f(t,u):

x = t+u; y = t*t+1+u*u; z = u
return (x,y,z)

Array definition of geometry
a = D.surface(f)

(continues on next page)

3.2. General purpose grid generator 35

Examples/Generator/surfaceWalk.py

Generator Documentation, Release 3.1

(continued from previous page)

c = D.circle((1.2,1.7,0.6), 0.1,N=100)
c = T.rotate(c, (1.2,1.7,0.6), (0,1,0), 90.)
c = T.reorder(c,(-1,2,3))
c = T.projectOrtho(c,[a])

h = G.cart((0.,0.,0.),(0.01,1,1),(30,1,1))
r = G.surfaceWalk([a], c, h, niter=100)
C.convertArrays2File([a,c,r], "out.plt")

• 2D mesh extrusion from a curve and walking on a surface (pyTree):

- surfaceWalk (pyTree)
import Converter.PyTree as C
import Geom.PyTree as D
import Transform.PyTree as T
import Generator.PyTree as G

User definition of parametric curve
def f(t,u):

x = t+u; y = t*t+1+u*u; z = u
return (x,y,z)

Array definition of geometry
a = D.surface(f)

c = D.circle((1.2,1.7,0.6), 0.1)
c = T.rotate(c, (1.2,1.7,0.6), (0,1,0), 90.)
c = T.reorder(c,(-1,2,3))
c = T.projectOrtho(c,[a])

h = G.cart((0.,0.,0.),(0.01,1,1),(15,1,1))
r = G.surfaceWalk([a], c, h, niter=100)
C.convertPyTree2File(r, "out.cgns")

Generator.collarMesh(s1, s2, dj, dk, niterj=100, niterk=100, ext=5, alphaRef=30.,
type=’union’, contour=[], constraints1=[], constraints2=[],
toldist=1.e-10, topology=’overset’)

Create a collar mesh at junction(s) between two surfaces s1 and s2 in union or dif-
ference assembly, using a distribution along the surface dj and a distribution in the
normal direction to the wall dk. niterj and niterk are the number of smoothing it-
erations for j and k directions. ext is the extension of the collar mesh for difference
assembly. type is the assembly type, and can be ‘union’ or ‘difference’. alphaRef is
the deviation angle wrt 180 degrees above which the walk is stopped. contour is

36 Chapter 3. Contents

Examples/Generator/surfaceWalkPT.py

Generator Documentation, Release 3.1

the starting contour to create the collar grids, constraints1 and constraints2 are 1D
zones defining the curves the collar grid must follow on surfaces s1 and s2 respec-
tively. toldist is the matching point tolerance. Parameter ‘topology’ can be ‘overset’
or ‘extruded’, only useful in case of difference. Topology set to ‘overset’ results in two
overlapping collar grids, whereas it results in a collar grid extruded from the surface
grid in the other case.

Parameters

• s1 (array or pyTree) – surface

• s2 (array or pyTree) – surface

• dj (1D-array) – distribution of points along surfaces

• dk (1D-array) – distribution of points in the normal direction

• niterj (integer) – number of smoothing iterations in j direction

• niterk (integer) – number of smoothing iterations in k direction

• ext (integer) – extension of collar for difference assembly

• alphaRef (float) – deviation angle (in degrees) stopping the ex-
trusion

• type (string) – type of the assembly (union or difference)

• contour (list of arrays) – starting curve for the collar creation

• constraints1 (list of arrays) – 1D curves constraining the collar
on s1 surface

• constraints2 (list of arrays) – 1D curves constraining the collar
on s2 surface

• toldist (float) – merging points tolerance

• topology (string) – choice of collar mesh topology (overset or
extruded) in case of difference assembly

Returns 3D structured mesh

Return type array or pyTree

Example of use:

• 3D collar mesh between two surfaces (array):

- collarMesh (array) -
import Converter as C
import Geom as D
import Transform as T
import Generator as G

(continues on next page)

3.2. General purpose grid generator 37

Examples/Generator/collarMesh.py

Generator Documentation, Release 3.1

(continued from previous page)

s1 = D.sphere((0.,0.,0.),1,20)
s2 = T.translate(s1,(1.2,0.,0.)); s2 = T.homothety(s2,(0,0,0),0.5)
dhj = G.cart((0.,0.,0.),(1.e-2,1,1),(21,1,1))
dhk = G.cart((0.,0.,0.),(1.e-2,1,1),(11,1,1))
a = G.collarMesh(s1,s2, dhj,dhk,niterj=100,niterk=100,type='union')
C.convertArrays2File(a,"out.plt")

• 3D collar mesh between two surfaces (pyTree):

- collarMesh (pyTree)
import Converter.PyTree as C
import Geom.PyTree as D
import Transform.PyTree as T
import Generator.PyTree as G

s1 = D.sphere((0.,0.,0.),1,20)
s2 = T.translate(s1,(1.2,0.,0.)); s2 = T.homothety(s2,(0,0,0),0.5)
dhj = G.cart((0.,0.,0.),(1.e-2,1,1),(21,1,1))
dhk = G.cart((0.,0.,0.),(1.e-2,1,1),(11,1,1))
a = G.collarMesh(s1,s2, dhj,dhk,niterj=100,niterk=100,type='union')
C.convertPyTree2File(a,"out.cgns")

3.3 Cartesian grid generators

Generator.gencartmb(A, h, Dfar, nlvl)
Simple Cartesian generator. Create a set of Cartesian grids (B) around a list of body
grids (A). Those grids are patched with a ratio of 2. The user controls the number
of levels, and the number of points for each level of grid. h is the spatial step on the
finest level. Dfar is the maximal distance to the body. nlvl is a list that provides the
number of points per level (nlvl[0]: finest grid), except for the finest level.

Parameters

• A (array/list of arrays or pyTree/list of pyTrees) – body
grids

• h (float) – spatial step in the finest level

• Dfar (float) – maximal distance to the body A

• nlvl (list of integers) – list of number of points per level (except
the finest one)

Returns 2D/3D structured mesh

38 Chapter 3. Contents

Examples/Generator/collarMeshPT.py

Generator Documentation, Release 3.1

Return type array or pyTree

Example of use:

• Generation of Cartesian mesh refined near body grids (array):

- gencartmb (array) -
import Generator as G
import Converter as C

body grid
a = G.cylinder((0.,0.,0.), 0.5, 1., 360., 0., 10., (50,50,30))
h = 1.e-1# Step of finest Cartesian grid
Dfar = 10.# Extension of far boundaries
nlvl = [5,5,5] # Nb of points per level, except the 4th level (automatic)
cartGrids = G.gencartmb([a], h, Dfar, nlvl)
C.convertArrays2File(cartGrids, 'out.plt')

• Generation of Cartesian mesh refined near body grids (pyTree):

- gencartmb (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C

body mesh
a = G.cylinder((0.,0.,0.), 0.5, 1., 360., 0., 10., (50,50,30))
h = 1.e-1 # Step of finest Cartesian grid
Dfar = 20. # Distance to far boundaries

Nb of points per level:
Here 4 levels, but last one is computed automatically
nlvl = [10,10,5] # nlvl[0]: coarse grid

t = C.newPyTree(['Bodies', 'CARTESIAN']); t[2][1][2].append(a)
zones = G.gencartmb(t[2][1], h, Dfar, nlvl)
t[2][2][2] += zones
C.convertPyTree2File(t, 'out.cgns')

Generator.octree(surfs, snearList=[], dfarList=[], dfar=-1., balancing=0, level-
Max=1000, ratio=2, octant=None)

Create a QUAD quadtree mesh in 2D or an HEXA octree mesh in 3D starting from
a list of bodies and snears. Each parameter snear is the required spatial step of the
octree near the corresponding body; the extension of the domaine can be provided
by dfar, starting from the global bounding box of all surfaces defined by surfs. A
list of extensions can be provided in dfarList, in order not to take into account a
surface in the computation of the bounding box. It must be set to -1 for the surface

3.3. Cartesian grid generators 39

Examples/Generator/gencartmb.py
Examples/Generator/gencartmbPT.py

Generator Documentation, Release 3.1

that must not be taken into account. Parameter balancing=1 means that the octree
is balanced, i.e. adjacent elements are at worst twice as big/small; levelMax is the
maximum number of levels required. If ratio=2, then a classical octree mesh is built.
If ratio=3, a 27-tree mesh is built, in which case the spacing ratio is 3 (and not 2)
between two adjacent elements. Parameter balancing enables to balance the octree;
balancing=0 means no balancing; balancing=1 means a classical balancing, whereas
balancing=2 takes also into account elements sharing a common vertex.

Parameters

• surfs (list of arrays/pyTrees) – body grids

• snears (list of floats) – list of spatial step near the correspond-
ing body

• dfar (float) – maximal distance to the body grids

• balancing (integer) – activation key for balanced octree (0, 1 or
2)

• levelMax (integer) – maximum number of levels

• ratio (integer) – spacing ratio between two adjacent elements

Returns 2D/3D unstructured mesh

Return type array or pyTree

Example of use:

• Generation of unstructured octree mesh refined near body grids (array):

- octree (array) -
import Generator as G
import Converter as C
import Geom as D

s = D.circle((0,0,0), 1., N=100); snear = 0.01
res = G.octree([s], [snear], dfar=5., balancing=2)
C.convertArrays2File([res], 'out.plt')

• Generation of unstructured octree mesh refined near body grids (pyTree):

- octree (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

s = D.circle((0,0,0), 1., N=100); snear = 0.1

(continues on next page)

40 Chapter 3. Contents

Examples/Generator/octree.py
Examples/Generator/octreePT.py

Generator Documentation, Release 3.1

(continued from previous page)

res = G.octree([s], [snear], dfar=5.)
C.convertPyTree2File(res, 'out.cgns')

Generator.octree2Struct(octree, vmin=15, ext=0, optimized=1, merged=1,
AMR=0, sizeMax=1000000)

Convert an octree or a quadtree mesh into a set of Cartesian grids. Parameter ext is
the extension of Cartesian grids in all the directions; vmin can be an integer defining
the number of points in each Cartesian grid, or a list of integers, defining the number
of points per refinement level. In that case, the first element of the list of vmin
defines the finest level. Specifying all the levels is not mandatory. If optimized=1,
the ext value is reduced by -1 at overlap borders for the coarsest grid for minimum
overlapping. If merged=1, Cartesian grids are merged in order to reduce the number
of created grids. If AMR=1, a set of AMR zones are generated. Parameter sizeMax
can be used when merging is applied: in that case, the number of points per grid
does not exceed sizeMax. Warning: to obtain multigrid blocks, optimized must be
set to 0.

Parameters

• octree (array or pyTree) – input unstructured octree grid

• vmin (integer or list of integers) – number of points in all
Cartesian grids or list of number of points for each octree level

• ext (integer) – extension of Cartesian grids (0 = no extension, N
= extension of N cells in all direction)

• optimized (integer) – activation key for optimization of coarsest
grid (0 or 1)

• merged (integer) – activation key for automatic merging of Carte-
sian grids

• AMR (integer) – activation key for AMR generation (0 or 1)

• sizeMax (integer) – maximum number of points in Cartesian grids
after merging

Returns 2D/3D structured mesh

Return type array or pyTree

Example of use:

• Generation of structured Cartesian mesh from an octree grid (array):

- octree2Struct (array) -
import Generator as G

(continues on next page)

3.3. Cartesian grid generators 41

Examples/Generator/octree2Struct.py

Generator Documentation, Release 3.1

(continued from previous page)

import Converter as C
import Geom as D

s = D.circle((0,0,0), 1., N=100); snear = 0.1
res = G.octree([s],[snear], dfar=5., balancing=1)
res = G.octree2Struct(res, vmin=5, ext=2, optimized=1)
C.convertArrays2File([s]+res, "out.plt")

• Generation of structured Cartesian mesh from an octree grid (pyTree):

- octree2Struct (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

s = D.circle((0,0,0), 1., N=100); snear = 0.1
res = G.octree([s],[snear], dfar=5., balancing=1)
res = G.octree2Struct(res, vmin=5, ext=2,merged=1)
C.convertPyTree2File(res, 'out.cgns')

Generator.adaptOctree(octree, indicator, balancing=1, ratio=2)
Adapt an unstructured octree with respect to an indicator field located at element
centers. If ‘indicator’ is strictly positive for an element, then the element must be
refined as many times as required by the indicator number. If ‘indicator’ is strictly
negative, the element is coarsened if possible as many times as required by the in-
dicator number. If ‘indicator’ is 0., the element remains unchanged. balancing=1
means that the octree is balanced after adaptation. If ratio=2, then a classical octree
mesh is built. If ratio=3, a 27-tree mesh is built, in which case the spacing ratio
is 3 (and not 2) between two adjacent elements. For array interface indicator is an
array, for pyTree version, indicator is the name of field stored as a solution located
at centers. Exists also as in place version (_adaptOctree) that modifies a and returns
None.

Parameters

• octree (array or pyTree) – input unstructured octree grid

• indicator (array or variable name in the pyTree) – field of
values to indicate where to refine, coarsen or maintain the octree
grid

• balancing (integer) – activation key for balanced octree (0, 1 or
2, see the definition of octree function for the meaning)

• ratio (integer) – spacing ratio between two adjacent elements

42 Chapter 3. Contents

Examples/Generator/octree2StructPT.py

Generator Documentation, Release 3.1

Returns modified reference copy of t

Return type same as input

Example of use:

• Adaptation of an octree grid wrt. indicator (array):

- adaptOctree (array) -
import Generator as G
import Converter as C
import Geom as D

s = D.circle((0,0,0), 1., N=100); snear = 0.1
o = G.octree([s], [snear], dfar=5., balancing=1)
indic = C.node2Center(o)
indic = C.initVars(indic, 'indicator', 1.)
res = G.adaptOctree(o, indic)
C.convertArrays2File([o,res], "out.plt")

• Adaptation of an octree grid wrt. indicator (pyTree):

- adaptOctree (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

s = D.circle((0,0,0), 1., N=100); snear = 0.1
o = G.octree([s], [snear], dfar=5.,balancing=1)
o = C.initVars(o, 'centers:indicator', 1.)
res = G.adaptOctree(o)
C.convertPyTree2File(res, 'out.cgns')

Generator.expandLayer(octree, level=0, corners=0, balancing=0)
Expand the layer of given level for an octree unstructured mesh. If corners=1, ex-
pand also in corners directions. Exists also as in place version (_expandLayer) that
modifies a and returns None.

Parameters

• octree (array or pyTree) – input unstructured octree grid

• level (integer) – level to be expanded (level=0 is the finest)

• corners (integer) – activation key for expansion in corners (0 or
1)

• balancing (integer) – activation key for balanced octree (0, 1 or
2, see the definition of octree function for the meaning)

3.3. Cartesian grid generators 43

Examples/Generator/adaptOctree.py
Examples/Generator/adaptOctreePT.py

Generator Documentation, Release 3.1

Returns modified reference copy of t

Return type same as input

Example of use:

• Expansion of user-specified level in an octree grid (array):

- expandLayer (array) -
import Generator as G
import Converter as C
import Geom as D

s = D.circle((0.,0.,0.), 1., N=100)
o = G.octree([s], [0.1], dfar=1., balancing=1)
o2 = G.expandLayer(o, level=0)
C.convertArrays2File([o, o2], "out.plt")

• Expansion of user-specified level in an octree grid (pyTree):

- expandLayer (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

s = D.circle((0.,0.,0.),1.,N=100)
o = G.octree([s], [0.1], dfar=1., balancing=1)
o2 = G.expandLayer(o, level=0)
C.convertPyTree2File(o2, 'out.cgns')

3.4 Operations onmeshes

Generator.close(a, tol=1.e-12)
Close a mesh defined by array a. Points that are distant of tol maximum to one
another are merged.

Exists also as in place version (_close) that modifies a and returns None.

Parameters

• a (array or pyTree) – input mesh

• tol (float) – merging points tolerance

Returns modified reference copy of t

Return type array or pyTree

44 Chapter 3. Contents

Examples/Generator/expandLayer.py
Examples/Generator/expandLayerPT.py

Generator Documentation, Release 3.1

Example of use:

• Mesh closing (array):

- close (array) -
import Converter as C
import Generator as G

a = G.cylinder((0.,0.,0.), 0.5, 1., 360., 0.01, 10., (20,20,10))
a = C.convertArray2Tetra(a)
a = G.close(a, 1.e-3)
C.convertArrays2File(a, 'out.plt')

• Mesh closing (pyTree):

- close (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G

a1 = G.cart((0,0,0), (1,1,1), (10,10,1))
a2 = G.cart((9+1.e-2,0,0), (1,1,1), (10,10,1))
a3 = G.cart((0,-5.01,0),(1,1,1),(19,6,1))
a4 = G.cart((0,9.0001,0),(1,1,1),(10,6,1))
a5 = G.cart((9.01,9.0002,0),(1,1,1),(10,6,1))
t = C.newPyTree(['Base',2,a1,a2,a3,a4,a5])
t = G.close(t, 1.e-1)
C.convertPyTree2File(t, 'out.cgns')

Generator.selectInsideElts(a, curves)
Select elements of a TRI-array, whose centers are inside the given list of curves,
defined by BAR-arrays.

Parameters

• a (array or pyTree) – input triangle 2D mesh

• curves (array or list of arrays) – list of curves

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Selection of TRI cells inside a specified curve (array):

3.4. Operations onmeshes 45

Examples/Generator/close.py
Examples/Generator/closePT.py
Examples/Generator/selectInsideElts.py

Generator Documentation, Release 3.1

- selectInsideElts (array) -
import Converter as C
import Generator as G
import Geom as D

a = G.cart((0,0,0), (1,1,1), (10,10,1)); a = C.convertArray2Tetra(a)
b = D.circle((5,5,0), 3.); b = C.convertArray2Tetra(b)
a = G.selectInsideElts(a, [b])
C.convertArrays2File([a,b], 'out.plt')

• Selection of TRI cells inside a specified curve (pyTree):

- selectInsideElts (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Geom.PyTree as D

a = G.cart((0,0,0), (1,1,1), (10,10,1))
a = C.convertArray2Tetra(a)
b = D.circle((5,5,0), 3.)
b = C.convertArray2Tetra(b)
a = G.selectInsideElts(a, b)
C.convertPyTree2File(a, 'out.cgns')

Generator.map(a, distrib, dir)
Map a distribution on a curve or on a structured surface. Map a i-array distribution
in a direction (dir=1,2,3) in a surface or volume mesh.

Parameters

• a (array or pyTree) – 1D/2D/3D structured mesh

• distrib (array) – distribution of points

• dir (integer) – direction i/j/k for the distribution (dir=1,2,3)

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Map distribution (array):

- map (array) -
import Geom as D
import Generator as G

(continues on next page)

46 Chapter 3. Contents

Examples/Generator/selectInsideEltsPT.py
Examples/Generator/map.py

Generator Documentation, Release 3.1

(continued from previous page)

import Converter as C

Map on a curve
l = D.line((0,0,0), (1,1,0))
Ni = 10
d = G.cart((0,0,0), (1./(Ni-1),1.,1.), (Ni,1,1))
m = G.map(l, d)
C.convertArrays2File([m], "out1.plt")

Map on a structured surface
ni = 2; nj = 3
a = G.cart((0,0,0), (1,1,1), (ni,nj,1))
C.setValue(a, (1,1,1), [1.,1.,2.])
C.setValue(a, (1,2,1), [1.,2.,5.])
C.setValue(a, (1,3,1), [1.,3.,2.])
C.setValue(a, (2,1,1), [2.,1.,2.])
C.setValue(a, (2,2,1), [2.,2.,5.])
C.setValue(a, (2,3,1), [2.,3.,2.])
b = D.bezier(a, 10, 10)
Ni = 50; Nj = 30
d = G.cart((0,0,0), (1./(Ni-1),1./(Nj-1),1.), (Ni,Nj,1))
d = G.enforceX(d, 0.5, 0.01, (10,20))
d = G.enforceY(d, 0.5, 0.01, (10,20))
b = G.map(b, d)
C.convertArrays2File(b, "out2.plt")

Map in a direction
a = G.cylinder((0,0,0), 0.5, 2., 0, 60, 1., (20,20,1))
Ni = 10
d = G.cart((0,0,0), (1./(Ni-1),1.,1.), (Ni,1,1))
d = G.enforcePlusX(d, 0.01, (10,20))
a = G.map(a, d, 2)
C.convertArrays2File(a, "out3.plt")

• Map distribution (pyTree):

- map (pyTree) -
import Geom.PyTree as D
import Generator.PyTree as G
import Converter.PyTree as C

l = D.line((0,0,0), (1,1,0))
Ni = 11; dist = G.cart((0,0,0), (1./(Ni-1),1.,1.), (Ni,1,1))
l = G.map(l, dist)

(continues on next page)

3.4. Operations onmeshes 47

Examples/Generator/mapPT.py

Generator Documentation, Release 3.1

(continued from previous page)

t = C.newPyTree(['Base',1,l])
C.convertPyTree2File(t, 'out.cgns')

Generator.mapSplit(a, distrib, splitCrit=100.)
Split a i-array and map a distribution on the splitted i-array. SplitCrit is the curvature
radius triggering split.

Parameters

• a (array or pyTree) – 1D/2D/3D structured mesh

• distrib (array) – distribution of points

• splitCrit (float) – curvature radius for array splitting

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Split and map distribution (array):

- mapSplit (array) -
import Generator as G
import Converter as C
import Geom as D

polyline
a = D.polyline([(0,0,0),(1,0,0),(1,1,0),(2,3,0),(1.5,3,0),(1,1.5,0),(0,0,0)])
distribution
Ni = 41
dist = G.cart((0,0,0),(1./(Ni-1),1,1),(Ni,1,1))
dist = G.enforceX(dist, 15.5/(Ni-1), 0.005, 2,5)
dist = G.enforceX(dist, 27.5/(Ni-1), 0.005, 2,5)
a = G.mapSplit(a,dist,0.25)
C.convertArrays2File(a, 'out.plt')

• Split and map distribution (pyTree):

- mapSplit (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

polyline

(continues on next page)

48 Chapter 3. Contents

Examples/Generator/mapSplit.py
Examples/Generator/mapSplitPT.py

Generator Documentation, Release 3.1

(continued from previous page)

a = D.polyline([(0,0,0),(1,0,0),(1,1,0),(2,3,0),(1.5,3,0),(1,1.5,0),(0,0,0)])
distribution
Ni = 41
dist = G.cart((0,0,0),(1./(Ni-1),1,1),(Ni,1,1))
dist = G.enforceX(dist, 15.5/(Ni-1), 0.005, 2,5)
dist = G.enforceX(dist, 27.5/(Ni-1), 0.005, 2,5)
zones = G.mapSplit(a,dist,0.25)
t = C.newPyTree(['Base',1]); t[2][1][2] += zones
C.convertPyTree2File(t, 'out.cgns')

Generator.refine(a, power, dir)
Refine a structured array. The original distribution is kept but the number of points
is multiplied by power. Dir is the direction of refinement (1, 2, 3). If dir=0, refine in
all directions.

Exists also as in place version (_refine) that modifies a and returns None.

Parameters

• a ([array] or [zone]) – 1D/2D/3D structured mesh

• power (float) – multiplication factor of number of points

• dir (integer) – direction i/j/k for the distribution (dir=0,1,2,3)

Return type Identical to a

Example of use:

• Structured mesh refinement (array):

- refine (array) -
import Generator as G
import Converter as C

a = G.cart((0,0,0), (0.1,0.1,0.1), (20,20,1))

a = G.refine(a, 1.5, 1)
C.convertArrays2File([a], 'out.plt')

• Structured mesh refinement (pyTree):

- refine (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C

(continues on next page)

3.4. Operations onmeshes 49

Examples/Generator/refine.py
Examples/Generator/refinePT.py

Generator Documentation, Release 3.1

(continued from previous page)

a = G.cart((0,0,0), (0.1,0.1,0.1), (20,20,1))
a = G.refine(a, 1.5, 1)
C.convertPyTree2File(a, 'out.cgns')

Generator.mapCurvature(a, N, power, dir)
Map a structured array following the curvature. N is the final number of points. Dir
is the direction of remeshing (1, 2, 3).

Parameters

• a ([array] or [zone]) – 1D/2D structured mesh

• N (integer) – number of points after new distribution

• power (float) – refinement factor

• dir (integer) – direction i/j/k for the distribution (dir=1,2,3)

Return type Identical to a

Example of use:

• Map distribution wrt. curvature (array):

- mapCurvature (array) -
import Generator as G
import Converter as C
import Geom as D

ni = 2; nj = 3
a = G.cart((0,0,0), (1,1,1), (ni,nj,1))
C.setValue(a, (1,1,1), [1.,1.,2.])
C.setValue(a, (1,2,1), [1.,2.,4.])
C.setValue(a, (1,3,1), [1.,3.,2.])
C.setValue(a, (2,1,1), [2.,1.,2.])
C.setValue(a, (2,2,1), [2.,2.,5.])
C.setValue(a, (2,3,1), [2.,3.,2.])
b = D.bezier(a, density=10.)

b = G.mapCurvature(b, N=100, power=0.5, dir=1)
C.convertArrays2File([b], 'out.plt')

• Map distribution wrt. curvature (pyTree):

- mapCurvature (pyTree) -
import Generator.PyTree as G

(continues on next page)

50 Chapter 3. Contents

Examples/Generator/mapCurvature.py
Examples/Generator/mapCurvaturePT.py

Generator Documentation, Release 3.1

(continued from previous page)

import Converter.PyTree as C
import Geom.PyTree as D

ni = 2; nj = 3
a = G.cart((0,0,0), (1,1,1), (ni,nj,1))
C.setValue(a,'GridCoordinates', (1,1,1), [1.,1.,2.])
C.setValue(a,'GridCoordinates', (1,2,1), [1.,2.,5.])
C.setValue(a,'GridCoordinates', (1,3,1), [1.,3.,2.])
C.setValue(a,'GridCoordinates', (2,1,1), [2.,1.,2.])
C.setValue(a,'GridCoordinates', (2,2,1), [2.,2.,5.])
C.setValue(a,'GridCoordinates', (2,3,1), [2.,3.,2.])
b = D.bezier(a, density=10.)

b = G.mapCurvature(b, N=100, power=0.5, dir=1)

C.convertPyTree2File(b, 'out.cgns')

Generator.densify(a, h)
Densify a i-array or a BAR-array with a new discretization step h. Discretization
points from the original array are kept.

Exists also as in place version (_densify) that modifies a and returns None.

Parameters

• a ([array] or [zone]) – 1D structured mesh

• h (float) – new cell size step for the points densification

Return type Identical to a

Example of use:

• Curve densification (array):

- densify (array) -
import Generator as G
import Converter as C
import Geom as D

a = D.circle((0,0,0), 1., 10)
b = G.densify(a, 0.01)
C.convertArrays2File(b, 'out.plt')

• Curve densification (pyTree):

3.4. Operations onmeshes 51

Examples/Generator/densify.py
Examples/Generator/densifyPT.py

Generator Documentation, Release 3.1

- densify (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

a = D.circle((0,0,0), 1., 10)
b = G.densify(a, 0.01)
C.convertPyTree2File(b, 'out.cgns')

Generator.grow(a, vector)
Grow a surface array of one layer. Vector is the node displacement. For the array
version, vector is defined by an array. For the PyTree version, vector = [‘v1’,’v2’,’v3’]
where variables ‘v1’, ‘v2’, ‘v3’ are defined as solutions in a, located at nodes.

Parameters

• a (array or Zone) – 2D surface mesh

• vector (array or list of 3 variables contained in the
solution) – vector of node displacement

Returns new 3D structured mesh

Return type array or Zone

Example of use:

• Extrusion of one layer from a surface mesh (array):

- grow (array) -
import Converter as C
import Generator as G
import Geom as D

a = D.sphere((0,0,0), 1., 50)
n = G.getNormalMap(a)
n = C.center2Node(n); n[1] = n[1]*100.
b = G.grow(a, n)
C.convertArrays2File([b], 'out.plt')

• Extrusion of one layer from a surface mesh (pyTree):

- grow (pyTree)-
import Converter.PyTree as C
import Converter.Internal as Internal
import Generator.PyTree as G

(continues on next page)

52 Chapter 3. Contents

Examples/Generator/grow.py
Examples/Generator/growPT.py

Generator Documentation, Release 3.1

(continued from previous page)

import Geom.PyTree as D

a = D.sphere((0,0,0), 1., 50)
a = G.getNormalMap(a)
a = C.center2Node(a, Internal.__FlowSolutionCenters__)
a = C.rmVars(a, Internal.__FlowSolutionCenters__)
b = G.grow(a, ['sx','sy','sz'])
t = C.newPyTree(['Base1',2,'Base2',3])
t[2][1][2].append(a); t[2][2][2].append(b)
C.convertPyTree2File(t, 'out.cgns')

Generator.stack(a, b=None)
Stack two 2D structured meshes or a list of structured meshes (with the same nixnj)
into a single 3D mesh.

Parameters

• a (array, Zone or list of arrays, zones) – a 2D structured
mesh or a list of structured meshes

• b (array or Zone) – 2D structured mesh or None

Returns new 3D structured mesh

Return type array or Zone

Example of use:

• Mesh generation by stacking two meshes (array):

- stack (array) -
import Generator as G
import Converter as C
import Transform as T
import Geom as D

Concatenate 2 structured grids
a = G.cylinder((0,0,0), 1, 1.3, 360, 0, 1., (50,10,1))
b = T.rotate(a, (0,0,0), (1,0,0), 5.)
b = T.translate(b, (0,0,0.5))
c = G.stack(a, b)

Concatenate a list of structured grids
a = []
for i in range(10):

a.append(D.circle((0,0,i), 1.))
c = G.stack(a)

(continues on next page)

3.4. Operations onmeshes 53

Examples/Generator/stack.py

Generator Documentation, Release 3.1

(continued from previous page)

C.convertArrays2File(c, 'out.plt')

• Mesh generation by stacking two meshes (pyTree):

- stack (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Transform.PyTree as T

a = G.cylinder((0,0,0), 1, 1.3, 360, 0, 1., (50,10,1))
b = T.rotate(a, (0,0,0), (1,0,0), 5.)
b = T.translate(b, (0,0,0.5))
c = G.stack(a, b)
C.convertPyTree2File(c, 'out.cgns')

Generator.addNormalLayers(a, d, check=0, niter=0)
Normal extrusion from a surface mesh. d is a 1D distribution providing the height of
each layer. If check=1, the extrusion stops before negative volume cells are created.
Niter specifies the number of iterations for normals smoothing.

Parameters

• a (array or pyTree) – 2D surface mesh

• d (1D array) – distribution of normal extrusion

• check (integer) – activation key for negative volume criteria (0 or
1)

• niter (integer) – number of iterations for normals smoothing

Returns new 3D structured mesh

Return type array or pyTree

Example of use:

• Normal extrusion from a surface mesh (array):

- addNormalLayers (array) -
import Generator as G
import Converter as C
import Geom as D

d = C.array('d', 3, 1, 1)

(continues on next page)

54 Chapter 3. Contents

Examples/Generator/stackPT.py
Examples/Generator/addNormalLayers.py

Generator Documentation, Release 3.1

(continued from previous page)

d[1][0,0] = 0.1; d[1][0,1] = 0.2; d[1][0,2] = 0.3
a = D.sphere((0,0,0), 1, 50)
a = G.addNormalLayers(a, d)
C.convertArrays2File([a], 'out.plt')

• Normal extrusion from a surface mesh (pyTree):

- addNormalLayers (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

d = G.cart((0.1,0.,0.), (0.1,1,1),(2,1,1))
a = D.sphere((0,0,0), 1, 50)
a = D.line((0,0,0),(1,1,0),3)
b = G.addNormalLayers(a, d)
d = G.cart((0.1,0.,0.), (-0.1,1,1),(2,1,1))
c = G.addNormalLayers(a, d)
import Transform.PyTree as T
a = T.join(b,c)
C.convertPyTree2File(a, 'out.cgns')

Generator.TTM(a, niter=100)
Smooth a mesh using elliptic generator.

Parameters

• a (array or pyTree) – 2D structured mesh

• niter (integer) – number of smoothing iterations

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• 2D structured mesh smoothing (array):

- TTM (array) -
import Converter as C
import Generator as G
import Geom as D

P0 = (0,0,0); P1 = (5,0,0); P2 = (0,7,0); P3 = (5,7,0)

(continues on next page)

3.4. Operations onmeshes 55

Examples/Generator/addNormalLayersPT.py
Examples/Generator/TTM.py

Generator Documentation, Release 3.1

(continued from previous page)

Geometry
d1 = D.line(P0, P1); d2 = D.line(P2, P3)
pts = C.array('x,y,z', 5, 1, 1)
x = pts[1][0]; y = pts[1][1]; z = pts[1][2]

x[0] = 0. ; y[0] = 0.; z[0] = 0.
x[1] =-2. ; y[1] = 2.; z[1] = 0.
x[2] =-3. ; y[2] = 3.; z[2] = 0.
x[3] = 2. ; y[3] = 5.; z[3] = 0.
x[4] = 0. ; y[4] = 7.; z[4] = 0.
b1 = D.bezier(pts)

x[0] = 5.; y[0] = 0.; z[0] = 0.
x[1] = 3.; y[1] = 2.; z[1] = 0.
x[2] = 2.; y[2] = 3.; z[2] = 0.
x[3] = 6.; y[3] = 5.; z[3] = 0.
x[4] = 5.; y[4] = 7.; z[4] = 0.
b2 = D.bezier(pts)
C.convertArrays2File([d1, d2, b1, b2], 'geom.plt')

Regular discretision of each line
Ni = 20; Nj = 10
r = G.cart((0,0,0), (1./(Ni-1),1,1), (Ni,1,1))
q = G.cart((0,0,0), (1./(Nj-1),1,1), (Nj,1,1))
r1 = G.map(d1, r)
r2 = G.map(d2, r)
r3 = G.map(b1, q)
r4 = G.map(b2, q)

TTM
m = G.TFI([r1, r2, r3, r4])
m2 = G.TTM(m, 2000)
C.convertArrays2File([m,m2], 'out.plt')

• 2D structured mesh smoothing (pyTree):

- TTM (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Geom.PyTree as D

P0 = (0,0,0); P1 = (5,0,0); P2 = (0,7,0); P3 = (5,7,0)

Geometry

(continues on next page)

56 Chapter 3. Contents

Examples/Generator/TTMPT.py

Generator Documentation, Release 3.1

(continued from previous page)

d1 = D.line(P0,P1); d2 = D.line(P2,P3)
d3 = D.line(P0,P2); d4 = D.line(P1,P3)

Regular discretisation of each line
Ni = 20; Nj = 10
r = G.cart((0,0,0), (1./(Ni-1),1,1), (Ni,1,1))
q = G.cart((0,0,0), (1./(Nj-1),1,1), (Nj,1,1))
r1 = G.map(d1, r); r2 = G.map(d2, r)
r3 = G.map(d3, q); r4 = G.map(d4, q)

TTM
m = G.TFI([r1, r2, r3, r4])
m = G.TTM(m)
t = C.newPyTree(['Base',2]); t[2][1][2].append(m)
C.convertPyTree2File(t, 'out.cgns')

Generator.snapFront(a, S, optimized=1)
Snap a mesh to a surface S. A front must be defined in a by a cellN field. Points
of this front are snapped to the surface. If optimized=0, the exterior front cellN=1
is snapped, else if optimized=1 optimized front cellN=1 is snapped, else if opti-
mized=2, front cellN=0 is snapped.

Exists also as in place version (_snapFront) that modifies a and returns None.

Parameters

• a (array or pyTree) – 3D mesh

• S (list of zones) – surface mesh

• optimized (integer) – optimization key (0,1,2)

Returns new unstructured mesh

Return type array or pyTree

Example of use:

• Mesh snapping to a surface (array):

- snapFront (array) -
import Generator as G
import Converter as C
import Geom as D
import Connector as X
import Transform as T

(continues on next page)

3.4. Operations onmeshes 57

Examples/Generator/snapFront.py

Generator Documentation, Release 3.1

(continued from previous page)

s = D.circle((0,0,0), 1., N=100)
s = T.addkplane(s)

Grille cartesienne (reguliere)
BB = G.bbox([s])
ni = 100; nj = 100; nk = 3
xmin = BB[0]; ymin = BB[1]; zmin = BB[2]-0.5
xmax = BB[3]; ymax = BB[4]; zmax = BB[5]+0.5
hi = (xmax-xmin)/(ni-1); hj = (ymax-ymin)/(nj-1)
h = min(hi, hj)
ni = int((xmax-xmin)/h)+7; nj = int((ymax-ymin)/h)+7
b = G.cart((xmin-3*h, ymin-3*h, zmin), (h, h, 1.), (ni,nj,nk))
celln = C.array('cellN', ni, nj, nk)
celln = C.initVars(celln, 'cellN', 1.)

Masquage
cellno = X.blankCells([b], [celln], [s], blankingType=0, delta=0., dim=2)
a = C.initVars(s, 'cellN', 1)
b = C.addVars([b, cellno[0]])

Adapte le front de la grille a la surface
b = T.subzone(b, (1,1,2), (b[2],b[3],2))
b = G.snapFront(b, [s])

C.convertArrays2File([a,b], 'out.plt')

• Mesh snapping to a surface (pyTree):

- snapFront (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D
import Connector.PyTree as X
import Transform.PyTree as T
import Converter.Internal as Internal

s = D.circle((0,0,0), 1., N=100)
s2 = T.addkplane(s)

Grille cartesienne (reguliere)
BB = G.bbox([s])
ni = 100; nj = 100; nk = 3
xmin = BB[0]; ymin = BB[1]; zmin = BB[2]-0.5
xmax = BB[3]; ymax = BB[4]; zmax = BB[5]+0.5

(continues on next page)

58 Chapter 3. Contents

Examples/Generator/snapFrontPT.py

Generator Documentation, Release 3.1

(continued from previous page)

hi = (xmax-xmin)/(ni-1); hj = (ymax-ymin)/(nj-1)
h = min(hi, hj)
ni = int((xmax-xmin)/h)+7; nj = int((ymax-ymin)/h)+7
b = G.cart((xmin-3*h, ymin-3*h, zmin), (h, h, 1.), (ni,nj,nk))
t = C.newPyTree(['Cart'])
t[2][1][2].append(b)

Masquage
t = C.initVars(t,'cellN',1)
import numpy
BM = numpy.array([[1]])
t = X.blankCells(t,[[s2]],BM,blankingType='node_in',dim=2)

Adapte le front de la grille a la surface
dim = Internal.getZoneDim(b)
t = T.subzone(t, (1,1,2), (dim[1],dim[2],2))
t = G.snapFront(t, [s2])

t = C.addBase2PyTree(t, 'Surface', cellDim=2)
s2 = C.initVars(s2,'cellN',1)
t[2][2][2].append(s2)

C.convertPyTree2File(t, 'out.cgns')

Generator.snapSharpEdges(a, S, step=None, angle=30.)
Snap a mesh to a surface S, constrained by sharp edges and corners. if step != None,
sharp edges are refined with this step. Sharp Edges are calculated depending on
angle.

Exists also as in place version (_snapSharpEdges) that modifies a and returns None.

Parameters

• a (array or pyTree) – mesh to be deformed

• S (list of zones) – surface mesh

• step (float) – step for sharp edges refinement

• angle (float) – angle (in degrees) for sharp edges detection

Returns new unstructured mesh

Return type array or pyTree

Example of use:

• Mesh snapping to sharp edges of a surface (array):

3.4. Operations onmeshes 59

Examples/Generator/snapSharpEdges.py

Generator Documentation, Release 3.1

- snapSharpEdges (array) -
import Generator as G
import Converter as C
import Post as P
import Geom as D

Enforce polyline define by s in b
s = D.polyline([(0.2,0,0),(1,1,0),(2.5,1,0),(0.2,0,0)])
s = C.initVars(s, 'indic', 0)
h = 0.1
ni = 30; nj = 20; nk=1
b = G.cartHexa((-0.5, -0.5, 0), (h, h, 1.), (ni,nj,nk))
b = C.initVars(b, 'indic', 0)
b = G.snapSharpEdges(b, [s], h)
c = C.converter.convertQuad2Tri(b)
C.convertArrays2File([b,c, s], 'out.plt')

Same with smooth
#c = T.smooth(c, eps=0.5, niter=5,
fixedConstraints=s)
#projConstraints=s)C

Enforce all constraints (must be over-refined)
s = D.circle((0,0,0), R=1, N=400)
s = C.initVars(s, 'indic', 0)
h = 0.3
ni = 10; nj = 20; nk=1
b = G.cartHexa((-1.5, -1.5, 0), (h, h, 1.), (ni,nj,nk))
b = C.initVars(b, 'indic', 0)
b = G.snapSharpEdges(b, [s], 0.1*h)
c = C.converter.convertQuad2Tri(b)
C.convertArrays2File([b,c,s], 'out.plt')
import sys; sys.exit()

Idem external
h = 0.3
ni = 10; nj = 10; nk=1
s = G.cartHexa((-1.6,-1.6,0), (h/2,h/2,1.), (2*ni+2,2*nj+2,nk))
s = P.exteriorFaces(s)
s = C.initVars(s, 'indic', 0)
b = G.cartHexa((-1.5, -1.5, 0), (h, h, 1.), (ni,nj,nk))
b = C.initVars(b, 'indic', 0)
b = G.snapSharpEdges(b, [s], h*0.1)
C.convertArrays2File([b,s], 'out.plt')

• Mesh snapping to sharp edges of a surface (pyTree):

60 Chapter 3. Contents

Examples/Generator/snapSharpEdgesPT.py

Generator Documentation, Release 3.1

- snapSharpEdges (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

polylignes avec angles vifs
s = D.polyline([(0.02,0,0),(1,1,0),(2,1,0),(0.02,0,0)])
Grille cartesienne (reguliere)
h = 0.1
ni = 30; nj = 20; nk=1
b = G.cart((-0.5, -0.5, 0), (h, h, 1.), (ni,nj,nk))
b = G.snapSharpEdges(b, [s], h)
t = C.newPyTree(['Cart','Surface'])
t[2][1][2].append(b); t[2][2][2].append(s)
C.convertPyTree2File(t, 'out.cgns')

3.5 Operation on surfacemeshes

Generator.fittingPlaster(a, bumpFactor=0.)
Fit a surface structured patch to a curve a. BumpFactor controls the curvature of the
patch.

Parameters

• a (array) – curve to deform the structured patch

• bumpFactor (float) – amplitude of the bump

Returns new structured mesh

Return type array or pyTree

Example of use:

• Cartesian mesh deformation by a curve (array):

- fittingPlaster (array) -
import Generator as G
import Converter as C
import Geom as D

a = D.circle((0,0,0), 1, N=50)
a = C.convertArray2Tetra(a)
a = G.close(a)
b = G.fittingPlaster(a, bumpFactor=0.5)
C.convertArrays2File([a,b], 'out.plt')

3.5. Operation on surfacemeshes 61

Examples/Generator/fittingPlaster.py

Generator Documentation, Release 3.1

• Cartesian mesh deformation by a curve (pyTree):

- fittingPlaster (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

a = D.circle((0,0,0), 1, N=50)
a = C.convertArray2Tetra(a)
a = G.close(a)
b = G.fittingPlaster(a, bumpFactor=0.5)
C.convertPyTree2File(b, 'out.cgns')

Generator.gapfixer(a, c, hardPoints=None, refine=1)
Fill a gap defined by a BAR contour a drawn on a surface c. You can force the
generated mesh to pass through hardPoints (NODES). If refine=0, no inside points
are added.

Parameters

• a (BAR array) – contour of the gap

• c (array) – surface to be filled

• hardPoints (array or list of arrays) – mesh containing nodes
to be enforced

• refine (integer) – activation key for including points in the gap
mesh (0 or 1)

Returns new surface mesh

Return type array or pyTree

Example of use:

• Surface gap filling from a contour (array):

- gapfixer (array) -
import Generator as G
import Converter as C
import Geom as D

Fix the gap inside a circle drawn on a plane
a = D.circle((0,0,0), 1, N=100)
a = C.convertArray2Tetra(a); a = G.close(a)
b = G.cart((-2.,-2.,0.), (0.1,0.1,1.), (50,50,1))

(continues on next page)

62 Chapter 3. Contents

Examples/Generator/fittingPlasterPT.py
Examples/Generator/gapfixer.py

Generator Documentation, Release 3.1

(continued from previous page)

a1 = G.gapfixer(a, b)
C.convertArrays2File(a1, 'out.plt')

Fill the gap in the circle, using one defined point
hp = D.point((0.5, 0.5, 0.))
a2 = G.gapfixer(a, b, hp, refine=0)
C.convertArrays2File(a2, 'outHP.plt')

• Surface gap filling from a contour (pyTree):

- gapfixer (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

Fix the gap inside a circle drawn on a plane
a = D.circle((0,0,0), 1, N=100)
a = C.convertArray2Tetra(a); a = G.close(a)
b = G.cart((-2.,-2.,0.), (0.1,0.1,1.), (50,50,1))
a1 = G.gapfixer(a, b)
C.convertPyTree2File(a1, 'out.cgns')

Fill the gap in the circle, using one defined point
hp = D.point((0.5, 0.5, 0.))
a2 = G.gapfixer(a, b, hp, refine=0)
C.convertPyTree2File(a2, 'outHP.cgns')

Generator.gapsmanager(A, mode=0, coplanar=0)
Fill multiple gaps in a set of surface components A. Also, eliminate overlap regions
between components if any. Normals for all patches must be pointed outwards. Set
mode=0 for nodal mesh, 1 for center mesh, and 2 otherwise. Set coplanar=1 if all
components are lying on a same plane.

Parameters

• A (array or pyTree) – surface mesh with gaps

• mode (integer) – key for grid location (0 = nodes, 1 = centers, 2
= others)

• coplanar (integer) – activation key for coplanar components of A
(0 or 1)

Returns new surface mesh

Return type array or pyTree

3.5. Operation on surfacemeshes 63

Examples/Generator/gapfixerPT.py

Generator Documentation, Release 3.1

Example of use:

• Surface gaps filling (array):

- gapsmanager (array) -
import Geom as D
import Converter as C
import Generator as G

a = D.sphere6((0,0,0), 1, N=10)
a = C.node2Center(a)
a = C.convertArray2Tetra(a)
b = G.gapsmanager(a, mode=2)
C.convertArrays2File(b, 'out.plt')

• Surface gaps filling (pyTree):

- gapsmanager (pyTree) -
import Geom.PyTree as D
import Converter.PyTree as C
import Generator.PyTree as G

a = D.sphere6((0,0,0), 1, N=10)
a = C.node2Center(a)
a = C.convertArray2Tetra(a)
b = G.gapsmanager(a, mode=2)
C.convertPyTree2File(b, 'out.cgns')

Generator.mmgs(A, ridgeAngle=45., hmin=0., hmax=0., hausd=0.01, grow=1.1,
anisotropy=0, optim=0, fixedConstraints=[], sizeConstraints=[])

Refine a TRI surface mesh using MMGs.

Parameters

• A ([array, list of arrays] or [zone, pyTree]) – surface TRI
mesh

• ridgeAngle (double) – Angle between adjacent cells that MMGs
consider to be a ridge (degrees)

• hmin (double) – the minimum mesh step in final mesh

• hmax (double) – the maximum mesh step in final mesh

• hausd (double) – the maximum chordal deviation in final mesh
from initial mesh

• grow (double) – the maximum difference of steps between two ad-
jacent cells

64 Chapter 3. Contents

Examples/Generator/gapsmanager.py
Examples/Generator/gapsmanagerPT.py

Generator Documentation, Release 3.1

• optim (int) – if 1, only optimize mesh keeping the same number
of points

• fixedConstraints ([list of arrays] or [list of zones]) –
curves or surface identifying points that must be in output mesh

• sizeConstraints ([list of arrays] or [list of zones]) – curves
or surface defining sizemap

Returns remeshed surface

Return type identical to input

Example of use:

• Surface mesh remeshing (array):

- mmgs (array) -
import Geom as D
import Generator as G
import Converter as C

a = D.sphere6((0,0,0), 1., N=20, ntype='TRI')

Optimisation
b = G.mmgs(a, optim=1)
C.convertArrays2File(b, 'out.plt')

Remaillage avec parametres
b = G.mmgs(a, hausd=0.01, hmax=0.1)
C.convertArrays2File(b, 'out.plt')

Raffinement avec sizemap
a = C.initVars(a, 'sizemap=0.2*abs({x})+0.05')
b = G.mmgs(a, hausd=10.)
C.convertArrays2File(b, 'out.plt')

• Surface mesh remeshing (pyTree):

- mmgs (pyTree) -
import Geom.PyTree as D
import Generator.PyTree as G
import Converter.PyTree as C

a = D.sphere6((0,0,0), 1., N=20, ntype='TRI')

Optimisation
b = G.mmgs(a, optim=1)

(continues on next page)

3.5. Operation on surfacemeshes 65

Examples/Generator/mmgs.py
Examples/Generator/mmgsPT.py

Generator Documentation, Release 3.1

(continued from previous page)

C.convertPyTree2File(b, 'out1.cgns')

Remaillage avec parametres
b = G.mmgs(a, hausd=0.01, hmax=0.1)
C.convertPyTree2File(b, 'out2.cgns')

Raffinement avec sizemap
a = C.initVars(a, '{sizemap}=0.2*abs({CoordinateX})+0.05')
b = G.mmgs(a, hausd=10.)
C.convertPyTree2File(b, 'out3.cgns')

3.6 Information on generatedmeshes

Generator.barycenter(a, weight=None)
Return the barycenter of a, with optional weight.

Parameters

• a (array or pyTree) – input mesh

• weight (string) – name of the weight variable in a

Returns coordinates of the barycenter

Return type 3-list of floats

Example of use:

• Computation of the mesh barycenter (array):

- barycenter (array) -
import Generator as G
import Converter as C
a = G.cart((0.,0.,0.), (0.1,0.1,1.), (20,20,20))
print(G.barycenter(a))
w = C.initVars(a, 'weight', 1.); w = C.extractVars(w,['weight'])
print(G.barycenter(a, w))

• Computation of the mesh barycenter (pyTree):

- barycenter (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C

(continues on next page)

66 Chapter 3. Contents

Examples/Generator/barycenter.py
Examples/Generator/barycenterPT.py

Generator Documentation, Release 3.1

(continued from previous page)

a = G.cart((0.,0.,0.), (0.1,0.1,1.), (20,20,20))
print(G.barycenter(a))
a = C.initVars(a, 'weight', 1.)
print(G.barycenter(a, 'weight'))

Generator.bbox(a)
Return the bounding box [xmin, ymin, zmin, xmax, ymax, zmax] of a.

Parameters a (array or pyTree) – input mesh

Returns coordinates of the bounding box

Return type 6-list of floats

Example of use:

• Computation of the mesh bounding box (array):

- bbox (array) -
import Generator as G
a = G.cart((0.,0.,0.),(0.1,0.1,1.),(20,20,20))
b = G.cart((12.,0.,0.),(0.1,0.1,1.),(20,20,20))
print(G.bbox(a))
print(G.bbox([a, b]))

• Computation of the mesh bounding box (pyTree):

- bbox (pyTree) -
import Generator.PyTree as G
a = G.cart((0.,0.,0.),(0.1,0.1,1.),(20,20,20))
print(G.bbox(a))

Generator.bboxOfCells(a)
Return the bounding box of each cell of a. The bounding box field is located at
centers of cells.

Exists also as in place version (_bboxOfCells) that modifies a and returns None.

Parameters a (array or pyTree) – input mesh

Returns modified reference copy of a

Return type array or pyTree

Example of use:

3.6. Information on generatedmeshes 67

Examples/Generator/bbox.py
Examples/Generator/bboxPT.py

Generator Documentation, Release 3.1

• Computation of the cell bounding boxes (array):

- bboxOfCells (array) -
import Generator as G
a = G.cart((0.,0.,0.),(0.1,0.1,1.),(20,20,20))
b = G.bboxOfCells(a)
print(b)

• Computation of the cell bounding boxes (pyTree):

- bboxOfCells (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
a = G.cart((0.,0.,0.),(0.1,0.1,1.),(20,20,20))
a = G.bboxOfCells(a)
C.convertPyTree2File(a, 'out.cgns')

Generator.BB(a, method=’AABB’, weighting=0)
Return the bounding box of a as an array or a zone. If method is ‘AABB’, then it com-
putes the Axis-Aligned Bounding-Box, if method is ‘OBB’ then it computes the Ori-
ented Bounding-Box. The argument weighting may be 0, and the OBB is computed
using a Cloud-Point approach, or 1, and it is computed using a Surface-Weighting
approach. If weighting=1, then the provided array must be a surface composed of
triangles.

Exists also as in place version (_BB) that modifies a and returns None.

Parameters

• a (array or pyTree) – input mesh

• method (string) – choice between axis-aligned or oriented bound-
ing box

• weighting (integer) – activation key for surface weighting ap-
proach

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Bounding box generation (array):

- BB (array) -
import Generator as G
import Converter as C

(continues on next page)

68 Chapter 3. Contents

Examples/Generator/bboxOfCells.py
Examples/Generator/bboxOfCellsPT.py
Examples/Generator/BB.py

Generator Documentation, Release 3.1

(continued from previous page)

import Geom as D

s = D.circle((0,0,0), 1., N=100)
a = G.BB(s)
C.convertArrays2File([a,s], 'out.plt')

• Bounding box generation (pyTree):

- BB (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

s = D.circle((0,0,0), 1., N=100)
a = G.BB(s); a[0] = 'bbox'
C.convertPyTree2File([s,a], 'out.cgns')

Generator.CEBBIntersection(a1, a2, tol=1.e-10)
Test the Cartesian Elements Bounding Box (CEBB) intersection between a1 and a2.
Tolerance is a float given by tol. Return 0 if no intersection, 1 otherwise.

Parameters

• a1 (array or pyTree) – input mesh

• a2 (array or pyTree) – input mesh

• tol (float) – tolerance of intersection

Returns 0 if no intersection, 1 otherwise

Return type integer

Example of use:

• Intersection by Cartesian elements bounding box between two meshes (array):

- CEBBIntersection (array) -
import Generator as G
import Transform as T
ni = 11; nj = 3; nk = 11
a1 = G.cart((0.,0.,0.), (0.1,0.1,0.2),(ni, nj,nk))
a2 = G.cart((1.,0.,0.), (0.1,0.1,0.2),(ni, nj,nk))
a2 = T.rotate(a2, (0,0,0), (0,0,1), 12.)
print(G.CEBBIntersection(a1, a2))

• Intersection by Cartesian elements bounding box between two meshes (pyTree):

3.6. Information on generatedmeshes 69

Examples/Generator/BBPT.py
Examples/Generator/CEBBIntersection.py
Examples/Generator/CEBBIntersectionPT.py

Generator Documentation, Release 3.1

- CEBBIntersection (pyTree)-
import Generator.PyTree as G
import Transform.PyTree as T

ni = 11; nj = 3; nk = 11
a1 = G.cart((0.,0.,0.), (0.1,0.1,0.2),(ni, nj,nk))
a2 = G.cart((1.,0.,0.), (0.1,0.1,0.2),(ni, nj,nk))
a2 = T.rotate(a2, (0,0,0), (0,0,1), 12.)
print(G.CEBBIntersection(a1, a2))

Generator.bboxIntersection(a1, a2, tol=1.e-6, isBB=False, method=’AABB’)
Test if a1 and a2 intersects. Three options are available: method=’AABB’ (in-
tersection between two Axis-Aligned Bounding Boxes, by default); method=’OBB’
(intersection between two Oriented Bounding Boxes, the most general case);
method=’AABBOBB’ (intersection between an AABB -a1- and an OBB -a2-).; If
a1 and a2 are directly the corresponding bounding boxes, the user may switch
isBB=True in order to avoid recalculating them. Return 0 if no intersection, 1 other-
wise.

Exists also as in place version (_bboxIntersection) that modifies a1 and returns None.

Parameters

• a1 (array or pyTree) – input mesh

• a2 (array or pyTree) – input mesh

• tol (float) – tolerance of intersection

• isBB (boolean) – activation key if meshes already are bounding
boxes

• method (string) – intersection method

Returns 0 if no intersection, 1 otherwise

Return type integer

Example of use:

• Intersection by bounding box between two meshes (array):

- bboxIntersection (array) -
import Generator as G
ni = 11; nj = 3; nk = 11
a1 = G.cart((0.,0.,0.), (0.1,0.1,0.2),(ni, nj,nk))
a2 = G.cart((0.5,0.05,0.01), (0.1,0.1,0.2),(ni, nj,nk))
intersect = G.bboxIntersection(a1,a2); print(intersect)

70 Chapter 3. Contents

Examples/Generator/bboxIntersection.py

Generator Documentation, Release 3.1

• Intersection by bounding box between two meshes (pyTree):

- bboxIntersection (pyTree) -
import Generator.PyTree as G
ni = 11; nj = 3; nk = 11
a1 = G.cart((0.,0.,0.), (0.1,0.1,0.2),(ni, nj,nk))
a2 = G.cart((0.5,0.05,0.01), (0.1,0.1,0.2),(ni, nj,nk))
intersect = G.bboxIntersection(a1, a2); print(intersect)

Generator.checkPointInCEBB(a, (x, y, z))
Test if a given point is in the CEBB of a.

Parameters

• a (array or pyTree) – input mesh

• (x,y,z) (3-tuple of floats) – coordinates of point

Returns 0 if point is not in the CEBB of a, 1 otherwise

Return type integer

Example of use:

• Detection of point location in the bounding box of a mesh (array):

- checkPointInCEBB (array) -
import Generator as G
import Transform as T

Ni = 20; Nj = 20
a1 = G.cart((0,0,0),(1./Ni,0.5/Nj,1),(Ni,Nj,2))
a2 = G.cart((-0.1,0,0),(0.5/Ni, 0.5/Nj, 1), (Ni,Nj,2))
a2 = T.rotate(a2, (-0.1,0,0), (0,0,1), 0.22)

Check if point is in CEBB of mesh2
val = G.checkPointInCEBB(a2, (0.04839, 0.03873, 0.5)); print(val)

• Detection of point location in the bounding box of a mesh (pyTree):

- checkPointInCEBB (pyTree) -
import Generator.PyTree as G
import Transform.PyTree as T

Ni = 20; Nj = 20
a2 = G.cart((-0.1,0,0),(0.5/Ni, 0.5/Nj, 1), (Ni,Nj,2))
a2 = T.rotate(a2, (-0.1,0,0), (0,0,1), 0.22)

(continues on next page)

3.6. Information on generatedmeshes 71

Examples/Generator/bboxIntersectionPT.py
Examples/Generator/checkPointInCEBB.py
Examples/Generator/checkPointInCEBBPT.py

Generator Documentation, Release 3.1

(continued from previous page)

Check if point is in CEBB of a2
val = G.checkPointInCEBB(a2, (0.04839, 0.03873, 0.5)); print(val)

Generator.getVolumeMap(a)
Return the volume field of an array. Volume is located at centers of cells.

Exists also as in place version (_getVolumeMap) that modifies a and returns None.

Parameters a (array or pyTree) – input volume or surface mesh

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Computation of cells volume (array):

- getVolumeMap (array) -
import Generator as G
import Converter as C

a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,3))
vol = G.getVolumeMap(a)
vol = C.center2Node(vol); vol = C.addVars([a, vol])
C.convertArrays2File(vol, "out.plt")

• Computation of cells volume (pyTree):

- getVolumeMap (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C

a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,3))
a = G.getVolumeMap(a)
C.convertPyTree2File(a, 'out.cgns')

Generator.getNormalMap(a)
Return the surface normals field of a surface array. It is located at centers of cells.

Exists also as in place version (_getNormalMap) that modifies a and returns None.

Parameters a (array or pyTree) – input surface mesh

Returns modified reference copy of a

72 Chapter 3. Contents

Examples/Generator/getVolumeMap.py
Examples/Generator/getVolumeMapPT.py

Generator Documentation, Release 3.1

Return type array or pyTree

Example of use:

• Computation of surface normals (array):

- getNormalMap (array) -
import Geom as D
import Generator as G
import Converter as C

2D structured
a = D.sphere((0,0,0), 1, 50)
n = G.getNormalMap(a)
n = C.center2Node(n);n = C.addVars([a, n])
C.convertArrays2File([n], 'out1.plt')

2D unstructured
a = D.sphere((0,0,0), 1, 50)
a = C.convertArray2Tetra(a)
n = G.getNormalMap(a)
n = C.center2Node(n);n = C.addVars([a, n])
C.convertArrays2File([n], 'out2.plt')

• Computation of surface normals (pyTree):

- getNormalMap (pyTree) -
import Geom.PyTree as D
import Generator.PyTree as G
import Converter.PyTree as C

a = D.sphere((0,0,0), 1, 50)
a = G.getNormalMap(a)
C.convertPyTree2File(a, 'out.cgns')

Generator.getSmoothNormalMap(a, niter=2, eps=0.4)
Return the smoothed surface normals field of a surface array, located at nodes. niter
is the number of smoothing operations, and eps is a smoothing weight.

Exists also as in place version (_getSmoothNormalMap) that modifies a and returns
None.

Parameters

• a (array or pyTree) – input surface mesh

• niter (integer) – smoothing iterations number

3.6. Information on generatedmeshes 73

Examples/Generator/getNormalMap.py
Examples/Generator/getNormalMapPT.py

Generator Documentation, Release 3.1

• eps (float) – smoothing weight

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Computation of surface smoothed normals (array):

- getSmoothNormalMap (array) -
import Converter as C
import Generator as G
import Transform as T

a = G.cart((0.,0.,0.),(1.,1.,1.),(10,10,1))
b = G.cart((0.,0.,0.),(1.,1.,1.),(1,10,10))
b = T.rotate(b,(0.,0.,0.),(0.,1.,0.),45.)
c = C.convertArray2Hexa([a,b])
c = T.join(c); c = T.reorder(c,(1,))
c = T.rotate(c,(0.,0.,0.),(0.,1.,0.),15.)
s = G.getSmoothNormalMap(c, niter=4)
c = C.addVars([c,s])
C.convertArrays2File(c, "out.plt")

• Computation of surface smoothednormals (pyTree):

- getSmoothNormalMap (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Transform.PyTree as T

a = G.cart((0.,0.,0.),(1.,1.,1.),(10,10,1))
b = G.cart((0.,0.,0.),(1.,1.,1.),(1,10,10))
b = T.rotate(b,(0.,0.,0.),(0.,1.,0.),45.)
c = C.convertArray2Hexa([a,b])
c = T.join(c); c = T.reorder(c,(1,))
c = T.rotate(c,(0.,0.,0.),(0.,1.,0.),15.)
c = G.getSmoothNormalMap(c,niter=4)
C.convertPyTree2File(c, "out.cgns")

Generator.getOrthogonalityMap(a)
Return the orthogonality map of an array. The orthogonality map corresponds to the
maximum deviation of all dihedral angles of an element. The orthogonality map is
expressed in degree and located at centers.

Exists also as in place version (_getOrthogonalityMap) that modifies a and returns
None.

74 Chapter 3. Contents

Examples/Generator/getSmoothNormalMap.py
Examples/Generator/getSmoothNormalMapPT.py

Generator Documentation, Release 3.1

Parameters a (array or pyTree) – input mesh

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Computation of cells orthogonality (array):

- getOrthogonalityMap (array) -
import Generator as G
import Converter as C

a = G.cylinder((0.,0.,0.), 0.5, 1., 360., 0., 10., (50,50,10))
ac = C.node2Center(a)
ortho = G.getOrthogonalityMap(a)
ortho = C.addVars([ac, ortho])
C.convertArrays2File([ortho], "out.plt")

• Computation of cells orthogonality (pyTree):

- getOrthogonalityMap (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C

a = G.cylinder((0.,0.,0.), 0.5, 1., 360., 0., 10., (50,50,10))
a = G.getOrthogonalityMap(a)
C.convertPyTree2File(a, 'out.cgns')

Generator.getRegularityMap(a)
Return the regularity map of an array. The regularity map corresponds to the maxi-
mum deviation of the volume ratio of an element and all its neigbouring cells. The
regularity map is located at centers.

Exists also as in place version (_getRegularityMap) that modifies a and returns None.

Parameters a (array or pyTree) – input mesh

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Computation of cells regularity (array):

3.6. Information on generatedmeshes 75

Examples/Generator/getOrthogonalityMap.py
Examples/Generator/getOrthogonalityMapPT.py
Examples/Generator/getRegularityMap.py

Generator Documentation, Release 3.1

- getRegularityMap (array) -
import Generator as G
import Converter as C

a = G.cart((0,0,0), (1,1,1), (50,50,1))
a = G.enforceX(a, 25, 0.1, 10, 10)
ac = C.node2Center(a)
reg = G.getRegularityMap(a)
reg = C.addVars([ac, reg])
C.convertArrays2File([reg], "out.plt")

• Computation of cells regularity (pyTree):

- getRegularityMapPT (array) -
import Generator.PyTree as G
import Converter.PyTree as C

a = G.cart((0,0,0), (1,1,1), (50,50,1))
a = G.enforceX(a, 25, 0.1, 10, 10)
a = G.getRegularityMap(a)
C.convertPyTree2File(a, 'out.cgns')

Generator.getTriQualityMap(a)
Return the quality map of a TRI array. The triangle quality is a value between 0.
(degenerated triangle) and 1. (equilateral triangle). The quality map is located at
centers.

Exists also as in place version (_getTriQualityMap) that modifies a and returns None.

Parameters a (array or pyTree) – input surface TRI mesh

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Computation of triangles quality (array):

- getTriQualitylityMap (array) -
import Generator as G
import Converter as C
import Geom as D

a = D.sphere((0,0,0), 1, N=10)
a = C.convertArray2Tetra(a); a = G.close(a)

(continues on next page)

76 Chapter 3. Contents

Examples/Generator/getRegularityMapPT.py
Examples/Generator/getTriQualityMap.py

Generator Documentation, Release 3.1

(continued from previous page)

n = G.getTriQualityMap(a)
n = C.center2Node(n); n = C.addVars([a, n])
C.convertArrays2File([n], "out.plt")

• Computation of triangles quality (pyTree):

- getTriQualitylityMap (PyTree) -
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

a = D.sphere((0,0,0), 1, N=10)
a = C.convertArray2Tetra(a)
a = G.close(a)
t = C.newPyTree(['Base',2,a])
t = G.getTriQualityMap(t)
C.convertPyTree2File(t, 'out.cgns')

Generator.getCellPlanarity(a)
Return a measure of cell planarity for each cell. It is located at centers of cells.

Exists also as in place version (_getCellPlanarity) that modifies a and returns None.

Parameters a (array or pyTree) – input surface mesh

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Computation of cells planarity (array):

- getCellPlanarity (array) -
import Converter as C
import Generator as G
import Geom as D

a = D.sphere((0,0,0), 1., 10)
p = G.getCellPlanarity(a)
p = C.center2Node(p); a = C.addVars([a, p])
C.convertArrays2File([a], 'out.plt')

• Computation of cells planarity (pyTree):

3.6. Information on generatedmeshes 77

Examples/Generator/getTriQualityMapPT.py
Examples/Generator/getCellPlanarity.py
Examples/Generator/getCellPlanarityPT.py

Generator Documentation, Release 3.1

- getCellPlanarity (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G
import Geom.PyTree as D

a = D.sphere((0,0,0), 1., 10)
a = G.getCellPlanarity(a)
C.convertPyTree2File(a, 'out.cgns')

Generator.getCircumCircleMap(a)
Return the map of circum circle radius of any cell of a ‘TRI’ array.

Exists also as in place version (_getCircumCircleMap) that modifies a and returns
None.

Parameters a (array or pyTree) – input surface mesh

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Computation of cells circumscribed circle radius (array):

- getCircumCircleMap (array) -
import Geom as D
import Generator as G
import Converter as C

a = D.sphere((0,0,0), 1, 50)
a = C.convertArray2Tetra(a)
n = G.getCircumCircleMap(a)
n = C.center2Node(n); n = C.addVars([a, n])
C.convertArrays2File([n], "out.plt")

• Computation of cells circumscribed circle radius (pyTree):

- getCircumCircleMap (pyTree) -
import Geom.PyTree as D
import Generator.PyTree as G
import Converter.PyTree as C

a = D.sphere((0,0,0), 1, 50)
a = C.convertArray2Tetra(a)
t = C.newPyTree(['Base',2,a])

(continues on next page)

78 Chapter 3. Contents

Examples/Generator/getCircumCircleMap.py
Examples/Generator/getCircumCircleMapPT.py

Generator Documentation, Release 3.1

(continued from previous page)

t = G.getCircumCircleMap(t)
C.convertPyTree2File(t, 'out.cgns')

Generator.getInCircleMap(a)
Return the map of inscribed circle radius of any cell of a ‘TRI’ array.

Exists also as in place version (_getInCircleMap) that modifies a and returns None.

Parameters a (array or pyTree) – input surface mesh

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Computation of cells inscribed circle radius (array):

- getInCircleMap (array) -
import Geom as D
import Generator as G
import Converter as C

a = D.sphere((0,0,0), 1, 50)
a = C.convertArray2Tetra(a)
n = G.getInCircleMap(a)
n = C.center2Node(n); n = C.addVars([a, n])
C.convertArrays2File([n], "out.plt")

• Computation of cells inscribed circle radius (pyTree):

- getInCircleMap (pyTree) -
import Geom.PyTree as D
import Generator.PyTree as G
import Converter.PyTree as C

a = D.sphere((0,0,0), 1, 50)
a = C.convertArray2Tetra(a)
t = C.newPyTree(['Base',2,a])
t = G.getInCircleMap(t)
C.convertPyTree2File(t, 'out.cgns')

Generator.getEdgeRatio(a)
Return the ratio between the longest and the smallest edges of a cell.

Exists also as in place version (_getEdgeRatio) that modifies a and returns None.

3.6. Information on generatedmeshes 79

Examples/Generator/getInCircleMap.py
Examples/Generator/getInCircleMapPT.py

Generator Documentation, Release 3.1

Parameters a (array or pyTree) – input mesh

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Computation of maximum edge ratio of cells (array):

- getEdgeRatio(array) -
import Generator as G
import Converter as C

a = G.cart((0.,0.,0.), (0.1,0.1,0.1), (11,11,11))
a = G.enforcePlusX(a,1e-6,(5,50))
r = G.getEdgeRatio(a)
r = C.center2Node(r); r = C.addVars([a,r])
C.convertArrays2File([r], "out.plt")

• Computation of maximum edge ratio of cells (pyTree):

- getEdgeRatio(pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C

a = G.cart((0.,0.,0.), (0.1,0.1,0.1), (11,11,11))
a = G.enforcePlusX(a,1e-6,(5,50))
a = G.getEdgeRatio(a)
C.convertPyTree2File(a, "out.cgns")

Generator.getMaxLength(a)
Return the length of the longer edge of each cell.

Exists also as in place version (_getMaxLength) that modifies a and returns None.

Parameters a (array or pyTree) – input mesh

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Computation of maximum edge length of cells (array):

- getMaxLength(array) -
import Generator as G
import Converter as C

(continues on next page)

80 Chapter 3. Contents

Examples/Generator/getEdgeRatio.py
Examples/Generator/getEdgeRatioPT.py
Examples/Generator/getMaxLength.py

Generator Documentation, Release 3.1

(continued from previous page)

a = G.cart((0.,0.,0.), (0.1,0.1,0.1), (11,11,11))
a = G.enforcePlusX(a,1e-6,(5,50))
r = G.getMaxLength(a)
r = C.center2Node(r); r = C.addVars([a,r])
C.convertArrays2File([r], "out.plt")

• Computation of maximum edge length of cells (pyTree):

- getMaxLength(pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C

a = G.cart((0.,0.,0.), (0.1,0.1,0.1), (11,11,11))
a = G.enforcePlusX(a,1e-6,(5,50))
a = G.getMaxLength(a)
C.convertPyTree2File(a, "out.cgns")

3.7 Operations on distributions

Generator.enforceX(a, x0, enforcedh, (supp, add))
Enforce a region around a line x=x0. The size of the cell around the line is enforcedh.
“supp” points are suppressed from the starting distribution on the left and right side.
“add” points are added on the left and add points are added on the right. Add
exactely add points. Adjust add in order to have a monotonic distribution with:
Generator.enforceX(a, x0, enforcedh, supp, add). Exists also for Y and Z directions:
Generator.enforceY, Generator.enforceZ.

Parameters

• a (array or pyTree) – input structured mesh

• x0 (float) – X-coordinate for refinement

• enforcedh (float) – cell size near refinement

• supp (integer) – number of suppressed points

• add (integer) – number of added points

Returns modified reference copy of a

Return type array or pyTree

Example of use:

3.7. Operations on distributions 81

Examples/Generator/getMaxLengthPT.py

Generator Documentation, Release 3.1

• Structured mesh refinement around a line x=x0 (array):

- enforceX (array) -
import Generator as G
import Converter as C

Ni = 50; Nj = 50
a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,1))
Monotonic distribution
b = G.enforceX(a, 0.3, 0.001, (13,25))
C.convertArrays2File([b], "out.plt")

• Structured mesh refinement around a line x=x0 (pyTree):

- enforceX (pyTree) -
import Generator.PyTree as G
import Converter.PyTree as C

Ni = 50; Nj = 50; Nk = 2
a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,Nk))
a = G.enforceX(a, 0.3, 0.001, (13,25))
C.convertPyTree2File(a, 'out.cgns')

Generator.enforceMoinsX(a, enforcedh, (supp, add))
Same as before but with a one sided distribution (left). This can be usefull to create
a boundary layer distribution in an Euler mesh. Adjust add in order to have a mono-
tonic distribution with: Generator.enforceMoinsX(a, enforcedh, supp, add). Exists
also for Y and Z directions: Generator.enforceMoinsY, Generator.enforceMoinsZ.

Parameters

• a (array or pyTree) – input structured mesh

• enforcedh (float) – cell size near refinement

• supp (integer) – number of suppressed points

• add (integer) – number of added points

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Structured mesh refinement at left side (array):

82 Chapter 3. Contents

Examples/Generator/enforceX.py
Examples/Generator/enforceXPT.py
Examples/Generator/enforceMoinsX.py

Generator Documentation, Release 3.1

- enforceMoinsX (array) -
import Generator as G
import Converter as C

Ni = 50; Nj = 50
a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,1))
b = G.enforceMoinsX(a, 1.e-3, (10,15))
C.convertArrays2File([b], "out.plt")

• Structured mesh refinement at left side (pyTree):

- enforceMoinsX (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G

Ni = 50; Nj = 50; Nk = 1
a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,Nk))
b = G.enforceMoinsX(a, 1.e-3, (10,15))
C.convertPyTree2File(b, 'out.cgns')

Generator.enforcePlusX(a, enforcedh, (supp, add))
Same as before but with a one sided distribution (right). Adjust add in order to have
a monotonic distribution with: Generator.enforcePlusX(a, x0, enforcedh, supp, add).
Exists also for Y and Z directions: Generator.enforceMoinsY, Generator.enforcePlusZ.

Parameters

• a (array or pyTree) – input structured mesh

• enforcedh (float) – cell size near refinement

• supp (integer) – number of suppressed points

• add (integer) – number of added points

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Structured mesh refinement at right side (array):

- enforcePlusX (array) -
import Generator as G
import Converter as C

(continues on next page)

3.7. Operations on distributions 83

Examples/Generator/enforceMoinsXPT.py
Examples/Generator/enforcePlusX.py

Generator Documentation, Release 3.1

(continued from previous page)

Distribution
Ni = 50; Nj = 50
a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,1))
b = G.enforcePlusX(a, 1.e-3, (10,20))
C.convertArrays2File([b], "out.plt")

• Structured mesh refinement at right side (pyTree):

- enforcePlusX (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G

Distribution
Ni = 50; Nj = 50
a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,1))
b = G.enforcePlusX(a, 1.e-3, (10,20))
C.convertPyTree2File(b, 'out.cgns')

Generator.enforceLine(a, line, enforcedh, (supp, add))
Enforce a curvilinear line defined by the array line in a distribution defined by the
array a.

Parameters

• a (array or pyTree) – input 2D distribution

• line (array) – line

• enforcedh (float) – cell size near refinement

• supp (integer) – number of suppressed points

• add (integer) – number of added points

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Distribution refinement around a line (array):

- enforceLine (array) -
import Generator as G
import Converter as C
import Geom as D

(continues on next page)

84 Chapter 3. Contents

Examples/Generator/enforcePlusXPT.py
Examples/Generator/enforceLine.py

Generator Documentation, Release 3.1

(continued from previous page)

Ni = 50; Nj = 50
a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,1))
b = D.line((0.,0.2,0.), (1.,0.2,0.), 20)
c = G.enforceLine(a, b, 0.01, (5,3))
C.convertArrays2File([c], 'out.plt')

• Distribution refinement around a line (pyTree):

- enforceLine (pyTree)-
import Generator.PyTree as G
import Converter.PyTree as C
import Geom.PyTree as D

Ni = 50; Nj = 50
a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,1))
b = D.line((0.,0.2,0.), (1.,0.2,0.), 20)
a = G.enforceLine(a, b, 0.01, (5,3))
C.convertPyTree2File(a, 'out.cgns')

Generator.enforcePoint(a, x0)
Enforce a point in the distribution. The index of enforced point is returned.

Parameters

• a (array or pyTree) – input 2D distribution

• x0 (float) – I-location of the refinement point

Returns index of enforced point

Return type integer

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Distribution refinement at a point (array):

- enforcePoint (array) -
import Converter as C
import Generator as G

distribution
Ni = 20; Nj = 20
a = G.cart((0,0,0), (1./(Ni-1),5./(Nj-1),1), (Ni,Nj,1))

(continues on next page)

3.7. Operations on distributions 85

Examples/Generator/enforceLinePT.py
Examples/Generator/enforcePoint.py

Generator Documentation, Release 3.1

(continued from previous page)

b = G.enforcePoint(a, 0.5)
C.convertArrays2File([b], "out.plt")

• Distribution refinement at a point (pyTree):

- enforcePoint (pyTree) -
import Converter.PyTree as C
import Generator.PyTree as G

Ni = 20; Nj = 20
a = G.cart((0,0,0), (1./(Ni-1),5./(Nj-1),1), (Ni,Nj,1))
b = G.enforcePoint(a, 0.5)
C.convertPyTree2File(b, 'out.cgns')

Generator.enforceCurvature(a, curve, power=0.5)
Enforce the curvature of an i-curve in a distribution defined by a. Power reflects the
power of stretching.

Parameters

• a (array or pyTree) – input 2D distribution

• curve (array) – reference curve for curvature

• power (float) – stretching ratio

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Distribution refinement wrt. a curve curvature (array):

- enforceCurvature (array) -
import Geom as D
import Generator as G
import Converter as C
import Transform as T

Naca profile with lines
a = D.naca(12., 501)
l1 = D.getLength(a)
a2 = D.line((1.,0.,0.),(2.,0.,0.), 500)
l2 = D.getLength(a2)
b = T.join(a, a2)

(continues on next page)

86 Chapter 3. Contents

Examples/Generator/enforcePointPT.py
Examples/Generator/enforceCurvature.py

Generator Documentation, Release 3.1

(continued from previous page)

c = D.line((2.,0.,0.),(1.,0.,0.), 500)
res = T.join(c, b)

Distribution on the profile
l = l1+2*l2
Ni = 100; Nj = 100
p1 = l2/l; p2 = (l2+l1)/l
h = (p2-p1)/(Ni-1)
distrib = G.cart((p1,0,0), (h, 0.25/Nj,1), (Ni,Nj,1))
distrib = G.enforceCurvature(distrib, res, 0.6)
C.convertArrays2File([distrib], "out.plt")

• Distribution refinement wrt. a curve curvature (pyTree):

- enforceCurvature (pyTree) -
import Geom.PyTree as D
import Generator.PyTree as G
import Converter.PyTree as C

a = D.naca(12., 501)

Distribution on the profile
Ni = 20; Nj = 20; Nk = 1; h = 1./(Ni-1)
b = G.cart((0,0,0), (h, 0.25/Nj,1), (Ni,Nj,Nk))
b = G.enforceCurvature(b, a, 0.6)
C.convertPyTree2File(b, 'out.cgns')

Generator.addPointInDistribution(a, ind)
Add a point in a distribution at index ind.

Parameters

• a (array or pyTree) – input distribution

• ind (integer) – I-index of inserted point

Returns modified reference copy of a

Return type array or pyTree

Example of use:

• Point insertion in a distribution (array):

- addPointInDistribution (array) -
import Generator as G

(continues on next page)

3.7. Operations on distributions 87

Examples/Generator/enforceCurvaturePT.py
Examples/Generator/addPointInDistribution.py

Generator Documentation, Release 3.1

(continued from previous page)

import Converter as C

Distribution
Ni = 50; Nj = 50
a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,1))
b = G.addPointInDistribution(a, Ni)
C.convertArrays2File([b], 'out.plt')

• Point insertion in a distribution (pyTree):

- addPointInDistribution (pyTree)-
import Generator.PyTree as G
import Converter.PyTree as C

Distribution
Ni = 50; Nj = 50
a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1), (Ni,Nj,2))
b = G.addPointInDistribution(a, Ni)
C.convertPyTree2File(b, 'out.cgns')

88 Chapter 3. Contents

Examples/Generator/addPointInDistributionPT.py

CHAPTER

FOUR

INDEX

• genindex

• modindex

• search

89

	Preamble
	List of functions
	Contents
	Basic grid generation
	General purpose grid generator
	Cartesian grid generators
	Operations on meshes
	Operation on surface meshes
	Information on generated meshes
	Operations on distributions

	Index

