
tkPlotXYDocumentation
Release 3.1

/ELSA/MU-10020/V3.1

May 28, 2020

CONTENTS

1 Preamble 1

2 List of classes 3

3 GraphEditor 7

4 Desktop 9
4.1 Data management . 9
4.2 Graph creation . 11

5 Graph 13
5.1 Configure the Graph object . 13

6 Curve 15
6.1 Creating a curve . 15
6.2 Editing a curve . 15
6.3 Adding a curve to a given plot on a given graph 17

7 Axis 19
7.1 Access the Axis system . 19
7.2 Multiple axis system . 20
7.3 Changing the Axis of a curve . 20
7.4 Editing the Axis system . 21

8 Grid 23
8.1 Access a Grid object . 24
8.2 Editing a Grid object . 24

9 Legend 27
9.1 Accessing a Legend object . 27
9.2 Editing a Legend object . 27

10 Update, View and Save your graph 29
10.1 Update figures . 29

i

10.2 Display on screen . 29
10.3 Save figures . 30

11 Extra usages 31
11.1 Load & Save configurations script . 31

12 Complete example 33

13 Index 37

ii

CHAPTER
ONE

PREAMBLE

tkPlotXY is a 2D plotting library based on Matplotlib. The aim of tkPlotXY is to provide to
users an easier scriptable interface and a useful graphical interface in the mean time. This
documentation focuses only on the scriptable interface. To know more about its graphical
interface, some tutos will soon be available.

tkPlotXY uses preferentially 1D-data from pyTrees but in the scriptable interface, some
other ways to define datas are available and will be exposed in this document.

This module is part of Cassiopee, a free open-source pre- and post-processor for CFD sim-
ulations.

For use in a python script, you have to import tkPlotXY module:

import tkPlotXY

1

tkPlotXYDocumentation, Release 3.1

2 Chapter 1. Preamble

CHAPTER
TWO

LISTOFCLASSES

tkPlotXY is based on classes. Some of them are internal classes used for display. They are
not documented here. It has to be remarked that some classes have a ‘TK’ suffix at the
end of their name. These classes are equivalent to the one without suffix, but they have
been developped to work inside the tkInter context. It means that for python scripting only
classes without the suffix ‘TK’ should be used.

– Classes

class tkPlotXY.GraphEditor(display)
The class GraphEditor is an encapsulation of class Desktop.

class tkPlotXY.Desktop
An object of class Desktop allows you to create all your graphs.

class tkPlotXY.Graph(parent, name, conf, dpi=None, figsize=None)
An object of class Graph corresponds to a window where plots are drawn. A graph
window can manage several plots.

class tkPlotXY.Axis(*args, **kwargs)
An Axis object contains the X-DirAxis and the Y-DirAxis of a given plot inside a Graph
object. Multiple axis are available for a single plot.

class tkPlotXY.DirAxis(axis_logscale, axis_autoscale, axis_min, axis_max,
axis_label, axis_inverted, axis_visible, axis_position,
axis_offset, axis_label_fontsize, axis_label_format)

DirAxis contains the settings of the X or Y axis. This settings can directly be accessed
from the class Axis.

class tkPlotXY.Legend(*args, **kwargs)
An object of class Legend configures the legend for a given plot inside a Graph win-
dow.

class tkPlotXY.AxisGrid(display, grid_color, grid_style, grid_width,
grid_tick_number, grid_tick_size)

class tkPlotXY.Grid(*args, **kwargs)
Grid contains the main grid and the second grid. They can be configured directly by

3

tkPlotXYDocumentation, Release 3.1

accessing to Grid or to the proper GridLevel object. In case of a multiple axis usage,
then multiple Grid objects can be attached to a given plot.

class tkPlotXY.LevelGrid(x_display, x_grid_color, x_grid_style, x_grid_width,
x_grid_tick_number, x_grid_tick_size, y_display,
y_grid_color, y_grid_style, y_grid_width,
y_grid_tick_number, y_grid_tick_size)

class tkPlotXY.Curve(*args, **kwargs)
Curve class describes all the settings concerning a given curve itself.

class tkPlotXY.SubPlotParams(*args, **kwargs)
SubPlotParams is one way (TightLayout) to set margin, padding for plots position-
ning inside the Graph window.

class tkPlotXY.TightLayout(*args, **kwargs)
TightLayout is one way (SubPlotParams) to set margin, padding for plots position-
ning inside the Graph window.

class tkPlotXY.Movie(fig, filename, fps=10)
Class Movie can be used to generate a movie in case of a dynamic plot (Co-processing
for instance)

4 Chapter 2. List of classes

CHAPTER
THREE

GRAPHEDITOR

class tkPlotXY.GraphEditor

An object of class GraphEditor allows you to create a Desktop. Accessing to the Desktop
will give you the possibility to plot all your graphs. Moreover, the Desktop contains all
the data that can be used to generate plots. For python scripting interface, the first step is
to create an object of this class GraphEditor and to access its Desktop. This is performed
by the function openGraphEditor that directly returns the Desktop. Then the data can be
added to this Desktop object. Finally it is used to generate all the graphs.

The first step is to create a graphEditor and to get its Desktop using :

tkPlotXY.openGraphEditor()

tkPlotXY.openGraphEditor(display) Create an object of class GraphEditor and
returns its Desktop.

import tkPlotXY as tkP
Create a graphEditor
graphDesktop = tkP.openGraphEditor(None)

5

tkPlotXYDocumentation, Release 3.1

6 Chapter 3. GraphEditor

CHAPTER
FOUR

DESKTOP

class tkPlotXY.Desktop

The Desktop deals with the data management and the graph plotting.

4.1 Datamanagement
The data can be loaded by a Desktop object from a pyTree or from a dictionnary. Only
the 1D-array data from a pyTree will be loaded while the data loaded from a dictionnary
has to be compliant with the following structure : {Base/Zone (string) : {Variable name
(string): data (array)}}

Several methods are available to set, update or even remove data :

Desktop.addZone(data, zoneName, baseName=’.*’)
Add a specific zone to the set of data. If pyTree format is used as input, then ‘base-
name’ can be specified to add only the zone from a specific base. If ‘basename’ is not
specified in case of pyTree format, then the specified zone for all the bases from the
pyTree will be added.

Desktop.setData(data)
Set all the data from the input pyTree or dictionnary to the Desktop data manager.

Desktop.replaceZone(data, oldZoneName, newZoneName, oldBaseName=”, newBase-
Name=”)

Allows you to replace a given zone by a new one. If some data from the old zone are
plotted, then the plot remains but the data are updated with the data loaded from
the new zone. According to the method addZone, old basename and new basename
can be given to specify the targeted base.

Desktop.deleteZoneFromData(zoneName, oldBaseName=”)
Simply delete data from a given zone and base to the set of data from the Desktop
object.

7

tkPlotXYDocumentation, Release 3.1

import numpy as np
import tkPlotXY as tkP
Create a graphEditor
graphDesktop = tkP.openGraphEditor(None)
Generate data
t = np.arange(0., 5., 0.002)
dataFromDict = {'Zone1':

{
'Iteration':t,
'Residual':np.sin(t),
'Cf':np.sin(t/2),
'Debit':t*t

}
}

Set data
graphDesktop.setData(dataFromDict)
Display data
for zone in graphDesktop.data.keys():

for var in graphDesktop.data[zone].keys():
print zone, ' : ', var, ' : ',graphDesktop.data[zone][var]

import tkPlotXY as tkP
Create a graphEditor
graphDesktop = tkP.openGraphEditor(None)
Generate data with a Lamb vortex (pyTree) -
import Generator.PyTree as G
import Initiator.PyTree as I
import Post.PyTree as P
import Converter.PyTree as C

NI = 100; NJ = 100
HI = 50./(NI-1); HJ = 50./(NJ-1)
tree = G.cart((0.,0.,0.), (HI,HJ,1.), (NI,NJ,2))
tree = I.initLamb(tree, position=(7.,7.), Gamma=2., MInf=0.8, loc='centers')
tree = P.isoSurfMC(tree, 'CoordinateZ', 0.5)
tree = P.isoSurfMC(tree, 'CoordinateY', 0.7)

Save generated data as cgns
C.convertPyTree2File(tree,'vortex_slice.hdf')
Load data as pyTree
tree=C.convertFile2PyTree('./vortex_slice.hdf')

Set data
graphDesktop.setData(tree)
Display data
for zone in graphDesktop.data.keys():

(continues on next page)

8 Chapter 4. Desktop

tkPlotXYDocumentation, Release 3.1

(continued from previous page)

for var in graphDesktop.data[zone].keys():
print zone, ' : ', var, ' : ',graphDesktop.data[zone][var]

4.2 Graph creation
Once data have been loaded into the Desktop, you can create as many graphs as you need
with the Desktop object. After that, all the drawing will be driven by the graph object itself.
This is performed by the method :

Desktop.createGraph(name, conf, dpi=None, figsize=None)
Create a window where the plots will be drawn. A matricial description is used to
define this window. For instance, here are described some settings for ‘conf’ variable:

• ‘1:1’ : a single plot in this graph window

• ‘2:2’ : 4 plots (2 rows and 2 columns)

• ‘2:1’ : 2 plots (2 rows and 1 column)

• ‘1:2’ : 2 plots (1 row and 2 columns)

figsize and dpi can configured to adapt the size and the resolution of the graph
window if needed. You can for instance use figsize=(12,3) to enlarge your image.

Create First Graph
graph_0 = graphDesktop.createGraph('MyFirstGraph','1:1')
Create Second Graph
graph_1 = graphDesktop.createGraph('MySecondGraph','2:1')

4.2. Graph creation 9

tkPlotXYDocumentation, Release 3.1

10 Chapter 4. Desktop

CHAPTER
FIVE

GRAPH

class tkPlotXY.Graph(parent, name, conf, dpi=None, figsize=None)
An object of class Graph corresponds to a window where plots are drawn. A graph
window can manage several plots.

Creating a Graph object will automatically generate an Axis, a Grid and a Legend objects
for each plots on the graph. Only curves have to be created and then attached to a given
graph.

Then each object can be configured. To do so, it is mandatory to access these objects
thanks to the graph.

All of these actions are described in the concerned item section (Curve, Axis, Grid or
Legend).

5.1 Configure the Graph object
Some times, using a matricial Graph (for instance ‘2:2’) will provide you an unacceptable
drawing. Indeed, the axis label of a plot may be overlapped by the plot below. For all these
reasons, you may be interested in advanced configuration for your Graph object such as
positionning, padding, margin . . .

Two possibilities are available: TightLayout or SubPlotParams.

In order to improve your drawing using SubPlotParams, please use the method:

Graph.updateSubPlotParams(params)

where params is a dictionnary such that:

params = {'left':...,'right':...,'top':...,'bottom':...,'hspace':...,'wspace':...,
→˓'isActive':True}

For example, let us create a Graph object graph_3 with 4 plots inside (‘2:2’) and let us try
to improve the poisitionnment of this graph with SubPlotParams:

11

tkPlotXYDocumentation, Release 3.1

Graph creation
graph_3 = graphDesktop.createGraph('MyThirdGraph','2:2')
Improving drawing of the Graph thanks to SubPlotParams
graph_3.updateSubPlotParams({'isActive':True,'right':0.97,'top':0.97,'wspace':0.3})

The other way to improve this kind of drawing is to use TightLayout:

Graph.updateTightLayout(params)

where:

params = {'isActive':True, 'pad':..., 'hpad':..., 'wpad':...}

For example, let us create a Graph object graph_3 with 4 plots inside (‘2:2’) and let us try
to improve the poisitionnment of this graph with TightLayout.

Graph creation
graph_3 = graphDesktop.createGraph('MyThirdGraph','2:2')
Improving drawing of the Graph thanks to TightLayout
graph_3.updateTightLayout({'isActive':True,'pad':1.1,'hpad':0.1,'wpad':0.1})

12 Chapter 5. Graph

CHAPTER
SIX

CURVE

class tkPlotXY.Curve(*args, **kwargs)
Curve class describes all the settings concerning a given curve itself.

6.1 Creating a curve
To create a curve, one has just to create an object of class Curve. All the settings, listed in
the section ‘Editing a curve’, can be already configured during the creation of the object.
For instance:

curve_0 = Curve(zone=['Base/cart'],varx='CoordinateX',vary='Density_FlowSolution' ,␣
→˓line_color='#7f00ff' , marker_face_color='#7f00ff' ,marker_edge_color='#7f00ff')

6.2 Editing a curve
To edit a curve, you can use the method :

Curve.setValue(variable, value)

with variable according to the following tab:

13

tkPlotXYDocumentation, Release 3.1

Table 1: Available variables to set a curve
Variable Allowed values Description
zone List of zones List of zones that should be

plotted
varx Variable name (string) X-coordinate variable name

(LaTeX available with $$)
vary Variable name (string) Y-coordinate variable name

(LaTeX available with $$)
line_color Html color code (string) Color used to plot the line
line_style ‘solid’, ‘dashed’, ‘dashdot’,

‘dotted’, ‘None’
Style of line to use

line_width (float) Width of the line
marker_style ‘none’, ‘plus’, ‘star’, ‘pixel’,

‘point’, ‘star3_down’,
‘star3_up’, ‘star3_left’,
‘star3_right’, ‘triangle_left’,
‘triangle_right’, ‘diamond’,
‘hexagon2’, ‘triangle_up’,
‘hline’, ‘thin_diamond’,
‘hexagon1’, ‘circle’, ‘pen-
tagon’, ‘square’, ‘trian-
gle_down’, ‘x’

Type of marker to use

marker_size (float) Size of the marker
marker_edge_color Html color code (string) Color of the edge of the

marker
marker_edge_width (float) Width of the edge of the

marker
marker_face_color Html color code (string) Color of the face marker
marker_sampling_start (int) Index on data to start plot-

ting markers
marker_sampling_end (int) Index on data to stop plot-

ting markers
marker_sampling_step (int) Step between index to plot

markers
legend_label (string) Name of the curve to display

in the legend
legend_display (bool) Display the current curve in

the legend
visible (bool) Hide or show the curve
axis (int) Axis in which the curve has

to be plotted

For instance to edit a curve to a dashed curve:

14 Chapter 6. Curve

tkPlotXYDocumentation, Release 3.1

curve_0.setValue('line_style','dashed')

A curve can be edited all the time. The graph has just to be updated after the modification
of the curve property.

6.3 Adding a curve to a given plot on a given graph
To attach a curve to a given plot inside a given graph, use the method:

Graph.addCurve(iCurSubGraph, curve)

where iCurSubGraph identifies the plot inside the graph thanks to its matricial position.
For instance, to add a curve on the second line and first column of the graph graph_1:

graph_1.addCurve('2:1',curve_0)

6.3. Adding a curve to a given plot on a given graph 15

tkPlotXYDocumentation, Release 3.1

16 Chapter 6. Curve

CHAPTER
SEVEN

AXIS

class tkPlotXY.Axis(*args, **kwargs)
An Axis object contains the X-DirAxis and the Y-DirAxis of a given plot inside a Graph
object. Multiple axis are available for a single plot.

class tkPlotXY.DirAxis(axis_logscale, axis_autoscale, axis_min, axis_max,
axis_label, axis_inverted, axis_visible, axis_position,
axis_offset, axis_label_fontsize, axis_label_format)

DirAxis contains the settings of the X or Y axis. This settings can directly be accessed
from the class Axis.

While a Graph object is created, an axis system (X and Y DirAxis) is generated for each
plot on the graph. This system of X and Y DirAxis is an Axis object.

7.1 Access the Axis system
To get the Axis system of given plot on a given graph, use the method on your graph:

Graph.getAxis(iCurSubGraph, ind=0)

where iCurSubGraph identifies the plot inside the graph thanks to its matricial position.
Moreover, in case of a multiple axis plot (2 or more Y DirAxis on the same plot for instance,
see Multiple axis system section), you can specify the number identifying your axis system
using ind. Note that the original axis system has the index 0 and then the index is increased
for each new axis system.

axis_2 = graph_1.getAxis('2:1',ind=0) # Equivalent to axis_2 = graph_1.getAxis('2:1')

7.2 Multiple axis system
On the same plot, you can use multiple axis system. You can decide to twin your X or Y
DirAxis or even to create a new independant axis system. to generate your new axis system

17

tkPlotXYDocumentation, Release 3.1

(twin or independant), use the method:

Graph.addAxis(iCurSubGraph, shared=None, ind=0, axis=None)

where iCurSubGraph identifies the plot inside the graph thanks to its matricial position,
shared can take the value : ‘x’,’X’,’y’,’Y’ or None. If None is used, then an independant
axis system will be created. If an other value is used, then axis allows you to specify the
index of the axis system you want to clone. Remember, this index starts at 0 for each plot
and is then locally increased for each new axis system in a plot. Or you can directly give
the object Axis you want to clone by using the parameter ‘axis’. This function returns the
newly created axis object.

Get axis_2
ind_axis_2 = axis_2.getInd() # returns the index of the current axis
axis_2 = graph_1.getAxis('2:1', ind_axis_2) # Equivalent to axis_2 = graph_1.getAxis(
→˓'2:1') because here ind_axis_2 = 0 !

Twin X DirAxis of axis_2
axis_3 = graph_1.addAxis('2:1',shared='x',axis=axis_2) # equivalent to "axis_3 =␣
→˓graph_1.addAxis('2:1',shared='x',ind=ind_axis_2)"
ind_axis_3 = axis_3.getInd()

7.3 Changing the Axis of a curve
Once a curve has been added to a given plot on a given graph and that this plot is composed
of several axis, then it is possible to change the axis where the curve will be drawn into
the given plot. To do so, you just need to edit the attribute axis of your Curve object. You
can either use the axis object itself or its index.

curve_3.setValue('axis',axis_3)
equivalent to
curve_3.setValue('ind_axis',ind_axis_3)

7.4 Editing the Axis system
You can edit it by accessing to the Axis object and using the method:

Axis.setValue(axis, variable, value)

where axis has to be ‘x’ or ‘y’.

Or you can directly access the X (resp. Y) DirAxis object by using the attribute x (resp. y)
of the class Axis that will return the X DirAxis (resp. Y DirAxis) and then you can use the
method:

18 Chapter 7. Axis

tkPlotXYDocumentation, Release 3.1

DirAxis.setValue(variable, value)

with variable according to the following tab:

Table 1: Available variables to set a DirAxis
Variable Allowed values Description
axis_logscale (bool) Use logscale for selected Di-

rAxis
axis_autoscale (bool) Use auto-scaling for selected

DirAxis
axis_min (float) Minimum range to plot for

the selected DirAxis
axis_max (float) Maximum range to plot for

the selected DirAxis
axis_label Label name (string) Label for the selected DirAxis

(LaTeX formula are avail-
able with $$)

axis_inverted (bool) Invert the orientation for the
selected DirAxis

axis_visible (bool) Show or hide the selected Di-
rAxis

axis_position For X-DirAxis :
‘top’,’bottom’,’both’ and for
Y-DirAxis : ‘left’,’right’,’both’

Position where to plot the
axis line, its ticks and the la-
bel for selected DirAxis

axis_offset (float) Introduce an offset for the
axis line, its ticks and the la-
bel for selected DirAxis

axis_label_fontsize (float) Set the size of the label font
for the selected DirAxis

For instance, setting logscale on the Y-DirAxis of the axis_3 previously defined as a twin
X-DirAxis of axis_2 (See Multiple axis system section)

axis_3.y.setValue('axis_logscale',True) # equivalent to axis_3.setValue('y','axis_
→˓inverted',True)

7.4. Editing the Axis system 19

tkPlotXYDocumentation, Release 3.1

20 Chapter 7. Axis

CHAPTER
EIGHT

GRID

class tkPlotXY.Grid(*args, **kwargs)
Grid contains the main grid and the second grid. They can be configured directly by
accessing to Grid or to the proper GridLevel object. In case of a multiple axis usage,
then multiple Grid objects can be attached to a given plot.

class tkPlotXY.LevelGrid(x_display, x_grid_color, x_grid_style, x_grid_width,
x_grid_tick_number, x_grid_tick_size, y_display,
y_grid_color, y_grid_style, y_grid_width,
y_grid_tick_number, y_grid_tick_size)

class tkPlotXY.AxisGrid(display, grid_color, grid_style, grid_width,
grid_tick_number, grid_tick_size)

Once an axis system is created, a Grid object is attached to this new axis system. It means
that for each Axis object there exists a unique associated Grid object. This Grid object is
composed of two LevelGrid objects : major and minor which corresponds to the main grid
and the second grid. Each LevelGrid object contains two AxisGrid : X and Y. To put it in a
nutshell, a Grid object describes 4 AxisGrid objects : major X, major Y, minor X and minor
Y.

Since Grid objects are automatically generated during the creation of Axis object, there is
no need to create Grid object. It is just needed to be able to access it.

8.1 Access a Grid object
To access the associated Grid object to a given Axis on a given plot inside a given Graph,
use the method:

Graph.getGrid(iCurSubGraph, ind=0, axis=None)

where iCurSubGraph identifies the plot inside the graph thanks to its matricial position.
Moreover, in case of a multiple axis plot (2 or more Y DirAxis on the same plot for instance,
see Multiple axis system section), you can specify the number identifying your axis system

21

tkPlotXYDocumentation, Release 3.1

using ind or directly specify the axis object using axis. Note that the original axis system
has the index 0 and then the index is increased for each new axis system.

For instance, to get the Grid associated to the Axis axis_3 previously defined:

grid_3 = graph_1.getGrid('2:1',ind=1)
is equivalent to
grid_3 = graph_1.getGrid('2:1',axis=axis_3)

If needed, you can access directly the LevelGrid object using the attributes minor and
major of class Grid and then you can get the AxisGrid using the attributes x and y of class
LevelGrid.

grid_3 = graph_1.getGrid('2:1',axis=axis_3)
grid_3_majorX = grid_3.major.x
grid_3_majorY = grid_3.major.y
grid_3_minorX = grid_3.minor.x
grid_3_minorY = grid_3.minor.y

8.2 Editing a Grid object
You can edit a Grid object using the method:

Grid.setValue(level, direction, variable, value)

where level (‘major’ or ‘minor’ expected) and direction (‘x’ or ‘y’ expected) identify the
AxisGrid to edit

or the LevelGrid object using the method:

LevelGrid.setValue(direction, variable, value)

where direction (‘x’ or ‘y’ expected) identifies the AxisGrid to edit

or directly the AxisGrid object using the method:

AxisGrid.setValue(variable, value)

Authorized variable and value are described in the following tab:

22 Chapter 8. Grid

tkPlotXYDocumentation, Release 3.1

Table 1: Available variables to set an AxisGrid
Variable Allowed values Description
display (bool) Show or hide the AxisGrid”
grid_color Html color code (string) Modify the color of the Axis-

Grid”
grid_style ‘solid’, ‘dashed’, ‘dashdot’,

‘dotted’, ‘None’
Modify the line style for the
AxisGrid”

grid_width (float) Modify the line width for the
AxisGrid”

grid_tick_number (int) Change the number of ticks
on the AxisGrid”

grid_tick_size (float) Change the size of the ticks”

For instance, to add the major grid as dashed lines for X and Y axis on the Grid grid_3
previously defined:

grid_3.setValue('major','x','display',True)
grid_3.setValue('major','x','grid_style','dashed')

grid_3.setValue('major','y','display',True)
grid_3.setValue('major','y','grid_style','dashed')

8.2. Editing a Grid object 23

tkPlotXYDocumentation, Release 3.1

24 Chapter 8. Grid

CHAPTER
NINE

LEGEND

class tkPlotXY.Legend(*args, **kwargs)
An object of class Legend configures the legend for a given plot inside a Graph win-
dow.

While a Graph object is created, a Legend object is associated to each plot of the Graph.
There is no need to create manually a Legend object. You just need to access it in order to
edit it.

9.1 Accessing a Legend object
To access a Legend object of a given plot inside a given Graph, use the method:

Graph.getLegend(iCurSubGraph)

where iCurSubGraph identifies the plot inside the graph thanks to its matricial position.

For example, to get the Legend of the plot on the second line of graph_1:

legend_2 = graph_1.getLegend('2:1')

9.2 Editing a Legend object
To edit a Legend object, you can use the method:

Legend.setValue(variable, value)

Authorized variable and value are described in the following tab:

25

tkPlotXYDocumentation, Release 3.1

Table 1: Available variables to set a Legend
Variable Allowed values Description
legend_display (bool) Show or hide the legend box
legend_title (string) Title of the legend
legend_border_width (float) Width of the legend box bor-

der
legend_border_color Html color code (string) Color of the border of the leg-

end box
legend_background_color Html color code (string) Background color of the leg-

end box
legend_background_color_active(bool) Use or not transparency as

background for the box of
the legend

legend_position ‘best’, ‘upper left’, ‘upper cen-
ter’, ‘upper right’, ‘center
left’, ‘center’, ‘center right’,
‘lower left’, ‘lower center’,
‘lower right’

Position of the legend box

legend_ncol (int) Number of columns to dis-
play the legend

legend_label_weight ‘normal’,’bold’ Use bold font for the curves
name

legend_label_style ‘normal’,’italic’ Use italic font for the curves
name

legend_label_size (float) Font size for the curves name
legend_label_color Html color code (string) Font color used for the name

of the curves
legend_title_weight ‘normal’,’bold’ Use bold font for the legend

title
legend_title_style ‘normal’,’italic’ Use italic font for the legend

title
legend_title_size (float) Font size for the legend title
legend_title_color Html color code (string) Font color used for the leg-

end title

For example, the following code set the title of Legend legend_2, that has been previously
defined, with a bold font:

legend_2.setValue('legend_title_weight','bold')

26 Chapter 9. Legend

CHAPTER
TEN

UPDATE, VIEWAND SAVE YOURGRAPH

Now that ve have listed all elements that can be used to configure your plots, let us address
the main objective of your python script: visualize your plot. First of all, you will need to
update them to take into account all the modifications that have been added. Then you
can either display on screen or save the figure.

10.1 Update figures
To update a given plot on a given Graph, use the method:

Graph.updateGraph(iCurSubGraph)

where iCurSubGraph identifies the plot inside the graph thanks to its matricial position.

For instance, in order to update the plot on second line of graph_2:

graph_2.updateGraph('2:1')

If you want to update all the plots of a given Graph, you can use the method:

Graph.drawFigure()

For example, to update the two plots on our graph_2:

graph_2.drawFigure()

Please, do not be confused, the method drawFigure does not display the figure !

10.2 Display on screen
In order to display on screen a Graph, use the method:

Graph.showFigure()

27

tkPlotXYDocumentation, Release 3.1

Do not forget to add a call to time.sleep() after this command in order to let the display
active more longer than just a pop-up !

import time
####
#...
####
graph_2.showFigure()
time.sleep(5.) # stop for 5 sec. here

10.3 Save figures
Use the method save of the class Graph to save your drawing in a file:

Graph.save(path, format=None)

where path is the output file path and format is the format you wish to use to save your
figure (available formats are : ‘emf’, ‘eps’, ‘pdf’, ‘png’, ‘ps’, ‘raw’, ‘rgba’, ‘svg’, ‘svgz’).

graph_2.save('/home/User/Example/myNiceGraph.png')

28 Chapter 10. Update, View and Save your graph

CHAPTER
ELEVEN

EXTRAUSAGES

11.1 Load & Save configurations script
Configurations scripts are python scripts automatically generated by the GUI. They can be
loaded to ease the proccess of tunning your plot. For instance, if you have a plot that
you often draw, instead of re-creating each time your drawing, you can simply load your
configuration and use it as a base. Moreover, this configurations scripts are created by the
graphical user interface and you will only need to adapt a few elements (removing the ‘TK’
suffix of all the classes basically) to use them directly as script without the GUI.

29

tkPlotXYDocumentation, Release 3.1

30 Chapter 11. Extra usages

CHAPTER
TWELVE

COMPLETE EXAMPLE

import tkPlotXY as tkP
Create a graphEditor
graphDesktop = tkP.openGraphEditor(None)
Generate data with a Lamb vortex (pyTree) -
import Generator.PyTree as G
import Initiator.PyTree as I
import Post.PyTree as P
import Converter.PyTree as C
import time,os
cwd = os.getcwd()

DEBUG_CHECKDATA = True

Creating a vortex
NI = 100; NJ = 100
HI = 50./(NI-1); HJ = 50./(NJ-1)
tree = G.cart((0.,0.,0.), (HI,HJ,1.), (NI,NJ,2))
tree = I.initLamb(tree, position=(7.,7.), Gamma=2., MInf=0.8, loc='centers')
tree = P.isoSurfMC(tree, 'CoordinateZ', 0.5)
tree = P.isoSurfMC(tree, 'CoordinateY', 0.7)

Save generated data as cgns
C.convertPyTree2File(tree,'vortex_slice.hdf')
Load data as pyTree
tree=C.convertFile2PyTree('./vortex_slice.hdf')

########################### Set data
graphDesktop.setData(tree)
if DEBUG_CHECKDATA:

for z in graphDesktop.data.keys():
print '*-'*15
print 'Zone : ',z
for k in graphDesktop.data[z].keys():

print '---> Var : ',k
(continues on next page)

31

tkPlotXYDocumentation, Release 3.1

(continued from previous page)

########################### Graph creation
Create First Graph
graph_0 = graphDesktop.createGraph('MyFirstGraph','1:1')
Create Second Graph
graph_1 = graphDesktop.createGraph('MySecondGraph','2:1')

########################### Curve creation
Create the first curve
curve_0 = tkP.Curve(zone=['Base/cart'],varx='CoordinateX',vary='Density@FlowSolution
→˓' , line_color='#7f00ff' , marker_face_color='#7f00ff' ,marker_edge_color='#7f00ff
→˓')

Create the second curve
curve_1 = tkP.Curve(zone=['Base/cart'],varx='CoordinateX',vary=
→˓'MomentumZ@FlowSolution' , line_color='#0404B4' , marker_face_color='#0404B4' ,
→˓marker_edge_color='#0404B4')

Create the third curve
curve_2 = tkP.Curve(zone=['Base/cart'],varx='CoordinateX',vary=
→˓'MomentumX@FlowSolution' , line_color='#FF00FF' , marker_face_color='#FF00FF' ,
→˓marker_edge_color='#FF00FF')

Create the fourth curve
curve_3 = tkP.Curve(zone=['Base/cart'],varx='CoordinateX',vary=
→˓'MomentumY@FlowSolution' , line_color='#FFBF00' , marker_face_color='#FFBF00' ,
→˓marker_edge_color='#FFBF00')

########################### Attaching curves to graph
First curve to graph_0
graph_0.addCurve('1:1',curve_0)
Second curve to graph_1 first line
graph_1.addCurve('1:1',curve_1)
Third curve to graph_1 second line
graph_1.addCurve('2:1',curve_2)
Fourth curve to graph_1 second line
graph_1.addCurve('2:1',curve_3)

########################### Editing curves
Name for the legend
curve_0.setValue('legend_label','Density')
curve_1.setValue('legend_label','MomentumZ')
curve_2.setValue('legend_label','MomentumX')
curve_3.setValue('legend_label','MomentumY')

(continues on next page)

32 Chapter 12. Complete example

tkPlotXYDocumentation, Release 3.1

(continued from previous page)

curve_3 : dashed
curve_3.setValue('line_style','dashed')

curve_2 : add markers
curve_2.setValue('marker_style','circle')
curve_2.setValue('marker_sampling_step',20) # 1 marker over 20

########################### Axis properties
1/- Get axis
axis_0 = graph_0.getAxis('1:1') # ind = 0
ind_axis_0 = axis_0.getInd()
#
axis_1 = graph_1.getAxis('1:1') # ind = 0
ind_axis_1 = axis_1.getInd()
#
axis_2 = graph_1.getAxis('2:1') # ind = 0
ind_axis_2 = axis_2.getInd()
2/- Twining X axis for plot 2:1 on graph_1
axis_3 = graph_1.addAxis('2:1',shared='x',axis=axis_2) # equivalent to "axis_3 =␣
→˓graph_1.addAxis('2:1',shared='x',ind=ind_axis_2)""
ind_axis_3 = axis_3.getInd()

Set the position of axis label
axis_2.setValue('y','axis_position','left')
axis_3.setValue('y','axis_position','right')
Change the label text
axis_1.setValue('y','axis_label','$\\rho W$')
axis_2.setValue('y','axis_label','$\\rho U$')
axis_3.setValue('y','axis_label','$\\rho V$')

Changing axis for curve_3
curve_3.setValue('axis',axis_3) # equivalent to "curve_3.setValue('ind_axis',ind_
→˓axis_3)"

########################### Editing Grid properties
Get the grid objects
grid_0 = graph_0.getGrid('1:1',ind=ind_axis_0) # equivalent to "grid_0 = graph_0.
→˓getGrid('1:1',axis=axis_0)"
grid_1 = graph_1.getGrid('1:1',ind=ind_axis_1) # equivalent to "grid_1 = graph_1.
→˓getGrid('1:1',axis=axis_1)"
grid_2 = graph_1.getGrid('2:1',axis=axis_2) # equivalent to "grid_2 = graph_1.
→˓getGrid('2:1',ind=ind_axis_2)"
grid_3 = graph_1.getGrid('2:1',axis=axis_3) # equivalent to "grid_3 = graph_1.
→˓getGrid('2:1',ind=ind_axis_3)"
Display a solid grid for the major grids on X & Y axis_2

(continues on next page)

33

tkPlotXYDocumentation, Release 3.1

(continued from previous page)

grid_2.major.x.setValue('grid_style','solid')
grid_2.major.y.setValue('grid_style','solid')

########################### Editing Legend properties
Get the legend objects
legend_0 = graph_0.getLegend('1:1')
legend_1 = graph_1.getLegend('1:1')
legend_2 = graph_1.getLegend('2:1')
Hide legend_1
legend_1.setValue('legend_display',False)
Reduce legend label size
legend_2.setValue('legend_label_size',8)
Increase legend title size and set its font as bold
legend_2.setValue('legend_title_size',10)
legend_2.setValue('legend_title_weight','bold')
Position legend in the lower right corner
legend_2.setValue('legend_position','lower right')

########################### Use SubPlotParams
params = {'left':0.12,'right':0.87,'top':0.90,'bottom':0.12,'isActive':True,'hspace
→˓':0.3}
graph_1.updateSubPlotParams(params)

########################### Update, view & save
Update
graph_1.drawFigure()
Display
graph_1.showFigure()
Wait
time.sleep(5.)
Save
graph_1.save(os.path.join(cwd,'MyNiceFigure.png'))

34 Chapter 12. Complete example

CHAPTER
THIRTEEN

INDEX

• genindex

• modindex

• search

35

	Preamble
	List of classes
	GraphEditor
	Desktop
	Data management
	Graph creation

	Graph
	Configure the Graph object

	Curve
	Creating a curve
	Editing a curve
	Adding a curve to a given plot on a given graph

	Axis
	Access the Axis system
	Multiple axis system
	Changing the Axis of a curve
	Editing the Axis system

	Grid
	Access a Grid object
	Editing a Grid object

	Legend
	Accessing a Legend object
	Editing a Legend object

	Update, View and Save your graph
	Update figures
	Display on screen
	Save figures

	Extra usages
	Load & Save configurations script

	Complete example
	Index

