Post: post-processing module
Preamble
This module provides post-processing tools for CFD simulations. It manipulates arrays (as defined in Converter documentation) or CGNS/Python trees (or pyTree, as defined in Converter/Internal documentation) as data structures.
This module is part of Cassiopee, a free open-source pre- and post-processor for CFD simulations.
For use with the array interface, you have to import Post module:
import Post
For use with the pyTree interface:
import Post.PyTree as Post
List of functions
– Modifying/creating Variables
|
Rename variables names in varsPrev with names defined by varsNew. |
|
Import the variables of tree t1 to tree t2. |
|
Compute the variables defined in varname for array. |
|
Compute variables that require a change of location. |
Compute wall shear stress. |
|
|
Compute the gradient of the field varname defined in array. |
|
Compute the gradient of a field defined on centers. |
|
Compute the norm of gradient of field varname defined in array. |
|
Compute the divergence of the given vector, whose components are defined in array using the computeGrad method for gradients. |
|
Compute the divergence of the field varname, whose components are defined in array using the computeGrad2 method for gradients. |
|
Compute the curl of the 3D-field defined in array. |
|
Compute the norm of the curl of the 3D-field defined in array. |
|
Compute the difference of the field varname defined in array. |
– Solution selection
|
Select cells in a given array. |
|
Select cells in a given array following tag. |
|
Interior faces of an array a. |
|
Exterior faces of an array. |
Return the list of exterior faces for a structured array Usage: exteriorFacesStructured(a,indices) |
|
|
Exterior elements of an array. |
|
Select faces located in the front of tag=0 and tag=1. |
|
Detect sharp edges between adjacent cells of a surface. |
|
Detect shape of an unstructured surface. |
|
Coarsen a surface TRI-type mesh given a coarsening indicator for each element. |
|
Refine a surface TRI-type mesh given an indicator for each element. |
|
Computes the indicator value on the octree mesh based on the maximum value of the absolute value of indicField. |
|
Compute the indicator -1, 0 or 1 for each element of the HEXA octree with respect to the indicatorValue field located at element centers. |
– Solution extraction
|
Extract the solution in one or more points. |
|
Slice solution with a plane. |
|
Extract the solution on a given mesh. |
|
Project the solution defined on a set of points to a TRI surface. |
|
Extract Chimera surface as an unique unstructured surface. |
|
Extract unique surfaces using ranked polygons. |
– Streams/Isos
|
Compute a streamline starting from (x0,y0,z0) given a list of arrays containing ‘vector’ information. |
|
Compute a streamribbon starting from (x0,y0,z0) given a list of arrays containing ‘vector’ information. |
|
Compute a stream surface. |
|
Compute an isoLine correponding to value of field ‘var’ on arrays. |
|
Compute an isoSurf corresponding to value of field ‘var’ in volume arrays. |
|
Compute an isoSurf correponding to value of field ‘var’ in volume arrays. |
– Solution integration
|
Integral of fields. |
|
Integral of fields times normal. |
|
Integral of scalar product fields times normal. |
|
Integral of moments. |
|
Integral of moments (OM^f.vect(n)). |
Contents
Modifying/creating variables
-
Post.
renameVars
(t, oldVarNameList, newVarNameList) Rename a list of variables with new variable names. Exists also as in place function (_renameVars) that modifies t and returns None.
- Parameters
t ([array, arrays] or [zone, list of zones, base, tree]) – Input data
oldVarNameList (list of strings) – list of variables to rename
newVarNameList (list of strings) – list of new variable names
- Returns
reference copy of input
- Return type
identical to t
Example of use:
# - renameVars (array) - import Converter as C import Post as P import Generator as G ni = 30; nj = 40 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,2)) m = C.initVars(m, 'ro', 1.) m = C.initVars(m, 'rou', 1.) # Rename a list of variables m2 = P.renameVars(m, ['ro','rou'], ['Density','MomentumX']) C.convertArrays2File(m2, "out.plt")
# - renameVars (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G ni = 30; nj = 40 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,2)) m = C.addVars(m, ['Density', 'centers:MomentumX']) # Rename a list of variables m2 = P.renameVars(m, ['Density', 'centers:MomentumX'], ['Density_M', 'centers:MomentumX_M']) C.convertPyTree2File(m2, 'out.cgns')
-
Post.PyTree.
importVariables
(t1, t2, method=0, eps=1.e-6, addExtra=1) Variables located at nodes and/or centers can be imported from a pyTree t1 to a pyTree t2. If one variable already exists in t2, it is replaced by the same variable from t1. If method=0, zone are matched from names, if method=1, zones are matched from coordinates with a tolerance eps, if method=2, zones are taken in the given order of t1 and t2 (must match one by one). If addExtra=1, unmatched zones are added to a base named ‘EXTRA’.
- Parameters
t1 (pyTree) – Input data
t2 (pyTree) – Input data
- Returns
reference copy of t2
- Return type
pyTree
Example of use:
# - importVariables (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P z1 = G.cart((0.,0.,0.),(0.1,0.1,0.1),(10,10,10)) z2 = G.cart((0.,0.,0.),(0.1,0.1,0.1),(10,10,10)) t1 = C.newPyTree(['Base', z1]); t2 = C.newPyTree(['Base', z2]) C._initVars(t1,'centers:cellN',1.) C._initVars(t1,'centers:Density',1.) C._initVars(t1,'Pressure',10.) C._initVars(t2,'centers:cellN',0.) t2 = P.importVariables(t1, t2) C.convertPyTree2File(t2, 'out.cgns')
-
Post.
computeVariables
(a, varList, gamma=1.4, rgp=287.053, s0=0., betas=1.458e-6, Cs=110.4, mus=1.76e-5, Ts=273.15) New variables can be computed from conservative variables. The list of the names of the variables to compute must be provided. The computation of some variables (e.g. viscosity) require some constants as input data. In the pyTree version, if a reference state node is defined in the pyTree, then the corresponding reference constants are used. Otherwise, they must be specified as an argument of the function. Exists also as in place version (_computeVariables) that modifies a and returns None.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – Input data
varList (list of strings) – list of variable names (can be preceded by ‘nodes:’ or ‘centers:’)
- Return type
identical to input
The constants are:
‘gamma’ for the specific heat ratio: \(\gamma\);
‘rgp’ for the perfect gas constant: \(R = (\gamma-1) \times C_v\);
‘betas’ and ‘Cs’ (Sutherland’s law constants), or ‘Cs’,’Ts’ and ‘mus’;
‘s0’ for a constant entropy, defined by: \(s_0 = s_{ref} - R \frac{\gamma}{\gamma-1} ln(T_{ref}) + R\ ln(P_{ref})\) where \(\ s_{ref}, T_{ref}\) and \(P_{ref}\) are defined for a reference state.
Computed variables are defined by their CGNS names:
‘VelocityX’, ‘VelocityY’, ‘VelocityZ’ for components of the absolute velocity,
‘VelocityMagnitude’ for the absolute velocity magnitude,
‘Pressure’ for the static pressure (requires: gamma),
‘Temperature’ for the static temperature (requires: gamma, rgp),
‘Enthalpy’ for the enthalpy (requires: gamma),
‘Entropy’ for the entropy (requires: gamma, rgp, s0),
‘Mach’ for the Mach number (requires: gamma),
‘ViscosityMolecular’ for the fluid molecular viscosity (requires: gamma, rgp, Ts, mus, Cs),
‘PressureStagnation’ for stagnation pressure(requires: gamma),
‘TemperatureStagnation’ for stagnation temperature (requires: gamma, rgp),
‘PressureDynamic’ for dynamic pressure (requires: gamma).
Example of use:
# - computeVariables (array) - import Converter as C import Post as P import Generator as G ni = 30; nj = 40 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,2)) c = C.array('ro,rou, rov,row,roE', ni, nj, 2) c = C.initVars(c, 'ro', 1.) c = C.initVars(c, 'rou', 1.) c = C.initVars(c, 'rov', 0.) c = C.initVars(c, 'row', 0.) c = C.initVars(c, 'roE', 1.) m = C.addVars([m, c]) #-------------------------------------------- # Pressure and Mach number extraction # default values of rgp and gamma are used #-------------------------------------------- p = P.computeVariables(m, ['Mach', 'Pressure']) m = C.addVars([m, p]) C.convertArrays2File(m, "out.plt")
Note
In the pyTree version, if the variable name is prefixed by ‘centers:’ then the variable is computed at centers only (e.g. ‘centers:Pressure’), and if it is not prefixed, then the variable is computed at nodes.
# - computeVariables (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G ni = 30; nj = 40 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,2)) vars = ['Density','MomentumX', 'MomentumY', 'MomentumZ', \ 'EnergyStagnationDensity'] for v in vars: m = C.addVars(m, v) # Pressure and Mach number extraction m = P.computeVariables(m, ['Mach', 'Pressure']) C.convertPyTree2File(m, 'out.cgns')
-
Post.
computeExtraVariable
(a, varName, gamma=1.4, rgp=287.053, Cs=110.4, mus=1.76e-5, Ts=273.15) Compute more advanced variables from conservative variables. ‘varName’ can be:
Vorticity,
VorticityMagnitude,
QCriterion,
ShearStress,
SkinFriction,
SkinFrictionTangential
The computation of the shear stress requires gamma, rgp, Ts, mus, Cs as input data. In the pyTree version, if a reference state node is defined in the pyTree, then thecorresponding reference constants are used. Otherwise, they must be specified as an argument of the function.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – Input data
varName (string) – variable name (can be preceded by ‘nodes:’ or ‘centers:’)
- Return type
identical to input
Example of use:
# - computeExtraVariable (array) - import Generator as G import Converter as C import Post as P import Transform as T a = G.cart( (0,0,0), (1,1,1), (50,50,50) ) a = C.initVars(a, 'Density', 1.) a = C.initVars(a, 'MomentumX', 1.) a = C.initVars(a, 'MomentumY', 0.) a = C.initVars(a, 'MomentumZ', 0.) a = C.initVars(a, 'EnergyStagnationDensity', 100000.) m = P.computeExtraVariable(a, 'VorticityMagnitude') q = P.computeExtraVariable(a, 'QCriterion') tau = P.computeExtraVariable(a, 'ShearStress') a = C.node2Center(a) a = C.addVars([a, m, q, tau]) # Skin friction requires a surface array with shear stress already computed wall = T.subzone(a, (1,1,1), (49,49,1)) skinFriction = P.computeExtraVariable(wall, 'SkinFriction') skinFrictionTangential = P.computeExtraVariable(wall, 'SkinFrictionTangential') wall = C.addVars([wall, skinFriction, skinFrictionTangential]) C.convertArrays2File([wall], 'out.plt')
# - computeExtraVariable (pyTree) - import Generator.PyTree as G import Converter.PyTree as C import Transform.PyTree as T import Post.PyTree as P def F(x,y): return x*x + y*y a = G.cart((0,0,0), (1,1,1), (50,50,50)) a = C.initVars(a, 'Density', 1.) a = C.initVars(a, 'MomentumX', F, ['CoordinateX', 'CoordinateY']) a = C.initVars(a, 'MomentumY', 0.) a = C.initVars(a, 'MomentumZ', 0.) a = C.initVars(a, 'EnergyStagnationDensity', 100000.) a = P.computeExtraVariable(a, 'centers:VorticityMagnitude') a = P.computeExtraVariable(a, 'centers:QCriterion') a = P.computeExtraVariable(a, 'centers:ShearStress') b = T.subzone(a, (1,1,1), (50,50,1)) b = P.computeExtraVariable(b, 'centers:SkinFriction') b = P.computeExtraVariable(b, 'centers:SkinFrictionTangential') C.convertPyTree2File(a, 'out.cgns')
-
Post.PyTree.
computeWallShearStress
(t) Compute the shear stress at wall boundaries provided the velocity gradient is already computed. The problem dimension and the reference state must be provided in t, defining the skin mesh.
Exists also as in place version (_computeWallShearStress) that modifies t and returns None.
The function is only available in the pyTree version.
- Parameters
t (pyTree, base, zone, list of zones) – input data
- Return type
identical to input
Example of use:
# - computeWallShearStress (pyTree) - import Generator.PyTree as G import Converter.PyTree as C import Transform.PyTree as T import Post.PyTree as P a = G.cart((0,0,0), (1,1,1), (50,50,1)) t = C.newPyTree(['Base',a]) C._addState(t, state='EquationDimension', value=3) C._addState(t, adim='adim1') C._initVars(t,'{VelocityX}=0.2*{CoordinateX}**2') C._initVars(t,'{VelocityY}=0.3*{CoordinateY}*{CoordinateX}') C._initVars(t,'VelocityZ', 0.) for var in ['VelocityX','VelocityY','VelocityZ']: t = P.computeGrad(t,var) t = C.node2Center(t,var) C._initVars(t,'centers:Density', 1.) C._initVars(t,'centers:EnergyStagnationDensity', 1.) C._initVars(t,'centers:Temperature', 1.) t = P.computeWallShearStress(t) C.convertPyTree2File(t, 'wall.cgns')
-
Post.
computeGrad
(a, varname) Compute the gradient (\(\nabla x, \nabla y, \nabla z\)) of a field of name varname defined in a. The returned field is located at cell centers.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – Input data
varname (string) – variable name (can be preceded by ‘nodes:’ or ‘centers:’)
- Return type
identical to input
Example of use:
# - computeGrad (array) - import Converter as C import Post as P import Generator as G ni = 1001; nj = 1001; nk = 1 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) m = C.initVars(m, '{ro}= 2*{x}+{x}*{y}') p = P.computeGrad(m,'ro') # p is defined on centers p = C.center2Node(p) # back on initial mesh p = C.addVars([m, p]) C.convertArrays2File([p], 'out.plt')
# - computeGrad (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G ni = 30; nj = 40; nk = 10 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) m = C.initVars(m, '{Density}=2*{CoordinateX}+{CoordinateX}*{CoordinateY}') m = P.computeGrad(m, 'Density') C.convertPyTree2File(m, 'out.cgns')
-
Post.
computeGrad2
(a, varname) Compute the gradient (\(\nabla x, \nabla y, \nabla z\)) at cell centers for a field of name varname located at cell centers.
Using Converter.array interface:
P.computeGrad2(a, ac, indices=None, BCField=None)
a denotes the mesh, ac denotes the fields located at centers. indices is a numpy 1D-array of face list, BCField is the corresponding numpy array of face fields. They are used to force a value at some faces before computing the gradient.
Using the pyTree version:
P.computeGrad2(a, varname)
The variable name must be located at cell centers. Indices and BCFields are automatically extracted from BCDataSet nodes: if a BCDataSet node is defined for a BC of the pyTree, the corresponding face fields are imposed when computing the gradient. If volume has already been computed and volume field is present in tree, it is not recomputed for the gradient computation (only NGON cases up to now).
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – Input data
varname (string) – variable name (can be preceded by ‘nodes:’ or ‘centers:’)
- Return type
identical to input
Example of use:
# - computeGrad2 (array) - import Converter as C import Post as P import Generator as G m = G.cartNGon((0,0,0), (1,1,1), (4,4,4)) mc = C.node2Center(m) mc = C.initVars(mc, '{ro}= 2*{x}+{x}*{y}') #mc = C.initVars(mc, '{ro}=1.') mv = C.extractVars(mc, ['ro']) p = P.computeGrad2(m, mv) # p is defined on centers p = C.center2Node(p) # back on initial mesh p = C.addVars([m, p]) C.convertArrays2File([p], 'out.plt')
# - computeGrad2 (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G m = G.cartNGon((0,0,0), (1,1,1), (4,4,4)) C._initVars(m, '{centers:Density}= 2*{centers:CoordinateX}+{centers:CoordinateY}*{centers:CoordinateZ}') m = P.computeGrad2(m, 'centers:Density') C.convertPyTree2File(m, 'out.cgns')
-
Post.
computeDiv
(a, varname) Compute the divergence \(\nabla\cdot\left(\vec{\bullet}\right)\) of a field defined by its component names [‘vectX’,’vectY’,’vectZ’] defined in a. The returned field is located at cell centers.
Using Converter.array interface:
P.computeDiv(a, ['vectX','vectY','vectZ'])
Using the pyTree version:
P.computeDiv(a, 'vect')
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – Input data
varname (string) – variable name (can be preceded by ‘nodes:’ or ‘centers:’)
- Return type
identical to input
Example of use:
# - computeDiv (array) - import Converter as C import Post as P import Generator as G ni = 1001; nj = 1001; nk = 1 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) m = C.initVars(m, '{veloX}= 2*{x}+{x}*{y}') m = C.initVars(m, '{veloY}= 4.*{y}') m = C.initVars(m, '{veloZ}= {x}+{z}*{z}') p = P.computeDiv(m, ['veloX','veloY','veloZ']) # p is defined on centers p = C.center2Node(p) # back to initial mesh p = C.addVars([m, p]) C.convertArrays2File([p], 'out.plt')
# - computeDiv (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G ni = 30; nj = 40; nk = 10 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) m = C.initVars(m, '{fldX}=2*{CoordinateX}+{CoordinateX}*{CoordinateY}') m = C.initVars(m, '{fldY}=4*{CoordinateY}') m = C.initVars(m, '{fldZ}={CoordinateX}+{CoordinateZ}*{CoordinateZ}') m = P.computeDiv(m, 'fld') C.convertPyTree2File(m, 'out.cgns')
-
Post.
computeDiv2
(a, varname) compute the divergence \(\nabla\cdot\left(\vec{\bullet}\right)\) at cell centers for a vector field defined by its variable names [‘vectX’,’vectY’,’vectZ’] located at cell centers.
Using Converter.array interface:
P.computeDiv2(a, ac, indices=None, BCField=None)
a denotes the mesh, ac denotes the components of the vector field located at centers. indices is a numpy 1D-array of face list, BCField is the corresponding numpy array of face fields. They are used to force a value at some faces before computing the gradients.
Using the pyTree version:
P.computeDiv2(a, 'vect')
The variable name must be located at cell centers. Indices and BCFields are automatically extracted from BCDataSet nodes: if a BCDataSet node is defined for a BC of the pyTree, the corresponding face fields are imposed when computing the gradient.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – Input data
varname (string) – variable name (can be preceded by ‘nodes:’ or ‘centers:’)
- Return type
identical to input
Example of use:
# - computeDiv2 (array) - import Converter as C import Post as P import Generator as G import math m = G.cartNGon((0,0,0), (1,1,1), (4,4,4)) def Fu(a): return math.cos(a) def Fv(a): return 4.*a def Fw(a,b,c): return b*(c**2) mc = C.node2Center(m) mc = C.initVars(mc, 'fldX', Fu, ['x']) mc = C.initVars(mc, 'fldY', Fv, ['y']) mc = C.initVars(mc, 'fldZ', Fw, ['x', 'y', 'z']) mv = C.extractVars(mc, ['fldX', 'fldY', 'fldZ']) p = P.computeDiv2(m, mv) # p is defined on centers p = C.center2Node(p) # back on initial mesh p = C.addVars([m, p]) C.convertArrays2File([p], 'out.plt')
# - computeDiv2 (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G m = G.cartNGon((0,0,0), (1,1,1), (4,4,4)) C._initVars(m, '{centers:fldX}= cos({centers:CoordinateX})') C._initVars(m, '{centers:fldY}= 4.*{centers:CoordinateY}') C._initVars(m, '{centers:fldZ}= {centers:CoordinateY}*{centers:CoordinateZ}**2.') m = P.computeDiv2(m, 'centers:fld') C.convertPyTree2File(m, 'out.cgns')
-
Post.
computeNormGrad
(a, varname) Compute the norm of gradient (\(\nabla x, \nabla y, \nabla z\)) of a field of name varname defined in a. The returned field ‘grad’+varname and is located at cell centers. (???)
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – Input data
varname (string) – variable name (can be preceded by ‘nodes:’ or ‘centers:’)
- Return type
identical to input
Example of use:
# - computeNormGrad (array) - import Converter as C import Post as P import Generator as G ni = 11; nj = 11; nk = 1 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) m = C.initVars(m, '{ro}= 2*{x}+{x}*{y}') p = P.computeNormGrad(m,'ro') # p is defined on centers p = C.center2Node(p) # back on initial mesh p = C.addVars([m, p]) C.convertArrays2File([p], 'out.plt')
# - computeNormGrad (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G ni = 30; nj = 40; nk = 10 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) m = C.initVars(m, '{Density}=2*{CoordinateX}+{CoordinateX}*{CoordinateY}') m = P.computeNormGrad(m, 'Density') C.convertPyTree2File(m, 'out.cgns')
-
Post.
computeCurl
(a[, 'vectx', 'vecty', 'vectz']) Compute curl of a 3D vector defined by its variable names [‘vectx’,’vecty’,’vectz’] in a. The returned field is defined at cell centers for structured grids and elements centers for unstructured grids.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – Input data
vect* (string) – variable name defining the 3D vector
- Return type
identical to input
Example of use:
# - computeCurl (array) - import Converter as C import Post as P import Generator as G def F(x,y,z): return 12*y*y + 4 ni = 30; nj = 40; nk = 3 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) m = C.initVars(m,'F1',F,['x','y','z']) m = C.initVars(m,'F2',0.); m = C.initVars(m,'F3',0.) varname = ['F1','F2','F3'] p = P.computeCurl(m, varname) # defined on centers p = C.center2Node(p) # back on init grid p = C.addVars([m,p]) C.convertArrays2File([p], "out.plt")
# - computeCurl (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G ni = 30; nj = 40; nk = 3 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) m = C.initVars(m,'{F1}=12*{CoordinateY}*{CoordinateY}+4') m = C.addVars(m,'F2'); m = C.addVars(m,'F3') varname = ['F1','F2','F3'] m = P.computeCurl(m, varname) C.convertPyTree2File(m, 'out.cgns')
-
Post.
computeNormCurl
(a[, 'vectx', 'vecty', 'vectz']) Compute the norm of the curl of a 3D vector defined by its variable names [‘vectx’,’vecty’,’vectz’] in a.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – Input data
vect* (string) – variable name defining the 3D vector
- Return type
identical to input
Example of use:
# - computeNormCurl (array) - import Converter as C import Post as P import Generator as G def F(x,y,z): return 12*y*y + 4 ni = 30; nj = 40; nk = 3 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) m = C.initVars(m,'F1',F,['x','y','z']) m = C.initVars(m,'F2',0.); m = C.initVars(m,'F3',0.) varname = ['F1','F2','F3'] p = P.computeNormCurl(m, varname) # defined on centers p = C.center2Node(p) # back on init grid p = C.addVars([m,p]) C.convertArrays2File([p], "out.plt")
# - computeNormCurl (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G def F(x,y,z): return 12*y*y + 4 ni = 30; nj = 40; nk = 3 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) m = C.initVars(m,'F1',F,['CoordinateX','CoordinateY','CoordinateZ']) m = C.addVars(m,'F2'); m = C.addVars(m,'F3') varname = ['F1','F2','F3'] m = P.computeNormCurl(m, varname) C.convertPyTree2File(m, 'out.cgns')
-
Post.
computeDiff
(a, varname) Compute the difference between neighbouring cells of a scalar field defined by its variable varname in a. The maximum of the absolute difference among all directions is kept.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – Input data
varname (string) – variable name (can be preceded by ‘nodes:’ or ‘centers:’)
- Return type
identical to input
Example of use:
# - computeDiff (array) - import Converter as C import Post as P import Generator as G def F(x): if ( x > 5. ): return True else : return False ni = 30; nj = 40; nk = 1 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1.), (ni,nj,nk)) m = C.initVars(m, 'ro', F, ['x']) p = P.computeDiff(m,'ro') p = C.addVars([m, p]) C.convertArrays2File([p], 'out.plt')
# - computeDiff (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G ni = 30; nj = 40; nk = 1 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) m = C.initVars(m, '{Density}=({CoordinateX}>5)*1.') m = P.computeDiff(m, 'Density') C.convertPyTree2File(m, 'out.cgns')
Solution selection
-
Post.
selectCells
(a, F, ['var1', 'var2', ]strict=0) Select cells with respect to a given criterion. If strict=0, the cell is selected if at least one of the cell vertices satisfies the criterion. If strict=1, the cell is selected if all the cell vertices satisfy the criterion. The criterion can be defined as a python function returning True (=selected) or False (=not selected):
P.selectCells(a, F, ['var1', 'var2'], strict=0)
or by a formula:
P.selectCells(a, '{x}+{y}>2', strict=0)
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
F (function) – cells selection criterion
var* (string) – arguments of function F
strict (integer) – selection mode (0 or 1)
- Return type
identical to input
Example of use:
# - selectCells (array) - import Converter as C import Generator as G import Post as P a = G.cart( (0,0,0), (1,1,1), (11,11,11) ) def F(x, y, z): if (x + 2*y + z > 20.): return True else: return False b = P.selectCells(a, F, ['x', 'y', 'z']) c = P.selectCells(a, F, ['x', 'y', 'z'], strict=1) d = P.selectCells(a, '{x}+2*{y}+{z}>20') e = P.selectCells(a, '({x}>2) & ({y}>2)') C.convertArrays2File([b,c,d,e], 'out.plt')
# - selectCells (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P def F(x, y, z): if (x + 2*y + z > 20.): return True else: return False a = G.cart( (0,0,0), (1,1,1), (11,11,11) ) a = P.selectCells(a, F, ['CoordinateX', 'CoordinateY', 'CoordinateZ']) C.convertPyTree2File(a, 'out.cgns')
-
Post.
selectCells2
(a, tag, strict=0) Select cells according to a field defined by a variable ‘tag’ (=1 if selected, =0 if not selected). If ‘tag’ is located at centers, only cells of tag=1 are selected. If ‘tag’ is located at nodes and ‘strict’=0, the cell is selected if at least one of the cell vertices is tag=1. If ‘tag’ is located at nodes and ‘strict’=1, the cell is selected if all the cell vertices is tag=1. In the array version, the tag is an array. In the pyTree version, the tag must be defined in a ‘FlowSolution_t’ type node located at cell centers or nodes.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
tag (string) – variable name
strict (integer) – selection mode (0 or 1)
- Return type
identical to input
Example of use:
# - selectCells2 (array) - import Converter as C import Generator as G import Post as P a = G.cart((0,0,0), (1,1,1), (11,11,11)) tag = C.array('tag', 10, 10, 10); tag = C.initVars(tag, 'tag', 1.) b = P.selectCells2(a, tag) C.convertArrays2File([b], 'out.plt')
# - selectCells2 (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P a = G.cart((0,0,0), (1,1,1), (11,11,11)) a = C.initVars(a, 'tag', 1.) b = P.selectCells2(a, 'tag') C.convertPyTree2File(b, 'out.cgns')
-
Post.
interiorFaces
(a, strict=0) Select the interior faces of a mesh. Interior faces are faces with two neighbouring elements. If ‘strict’ is set to 1, select the interior faces that have only interior nodes.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
strict (integer) – selection mode (0 or 1)
- Return type
identical to input
Example of use:
# - interiorFaces (array) - import Converter as C import Post as P import Generator as G # Get interior faces in broad sense: # faces with 2 neighbours a = G.cartTetra((0,0,0), (1,1.,1), (20,2,1)) b = P.interiorFaces(a) C.convertArrays2File([a,b], 'out1.plt') # Get interior faces in strict sense: # faces having only interior nodes a = G.cartTetra((0,0,0), (1,1.,1), (20,3,1)) b = P.interiorFaces(a,1) C.convertArrays2File([a,b], 'out2.plt')
# - interiorFaces (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G a = G.cartTetra((0,0,0), (1,1.,1), (20,20,1)) b = P.interiorFaces(a) t = C.newPyTree(['Base',1,b]) C.convertPyTree2File(t, 'out.cgns')
-
Post.
exteriorFaces
(a, indices=None) Select the exterior faces of a mesh, and return them in a single unstructured zone. If indices=[], the indices of the original exterior faces are returned. For structured grids, indices are the global index containing i faces, then j faces, then k faces, starting from 0. For NGON grids, indices are the NGON face indices, starting from 1.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
indices (list of integers) – indices of original exterior faces
- Return type
zone
Example of use:
# - exteriorFaces (array) - import Converter as C import Post as P import Generator as G a = G.cartTetra((0,0,0), (1,1,1), (20,20,20)) indices = [] b = P.exteriorFaces(a, indices=indices) print(indices) C.convertArrays2File(b, 'out.plt')
# - exteriorFaces (pyTree)- import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G a = G.cartTetra((0,0,0), (1,1,1), (4,4,6)) b = P.exteriorFaces(a) C.convertPyTree2File(b, 'out.cgns')
-
Post.
exteriorFacesStructured
(a) Select the exterior faces of a structured mesh as a list of structured meshes.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
- Return type
zone
Example of use:
# - exteriorFacesStructured (array) - import Converter as C import Post as P import Generator as G a = G.cart((0,0,0), (1,1,1), (4,4,6)) A = P.exteriorFacesStructured(a) C.convertArrays2File(A, 'out.plt')
# - exteriorFacesStructured (pyTree)- import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (4,4,6)) zones = P.exteriorFacesStructured(a) C.convertPyTree2File(zones, 'out.cgns')
-
Post.
exteriorElts
(a) Select the exterior elements of a mesh, that is the first border fringe of cells.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
- Return type
identical to input
Example of use:
# - exteriorElts (array) - import Converter as C import Post as P import Generator as G a = G.cartTetra((0,0,0), (1,1,1), (10,10,10)) b = P.exteriorElts(a) C.convertArrays2File(b, 'out.plt')
# - exteriorElts (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G a = G.cartTetra((0,0,0), (1,1,1), (10,10,10)) b = P.exteriorElts(a) C.convertPyTree2File(b, 'out.cgns')
-
Post.
frontFaces
(a, tag) Select faces that are located at the boundary where a tag indicator change from 0 to 1.
- param a
input data
- type a
[array, list of arrays] or [pyTree, base, zone, list of zones]
- param tag
variable name
- type tag
string
- rtype
zone
Example of use:
# - frontFaces (array) - import Converter as C import Generator as G import Post as P a = G.cart( (0,0,0), (1,1,1), (11,11,11) ) def F(x, y, z): if (x + 2*y + z > 20.): return 1 else: return 0 a = C.initVars(a, 'tag', F, ['x', 'y', 'z']) t = C.extractVars(a, ['tag']) f = P.frontFaces(a, t) C.convertArrays2File([a,f], 'out.plt')
# - frontFaces (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P a = G.cart( (0,0,0), (1,1,1), (11,11,11) ) def F(x, y, z): if (x + 2*y + z > 20.): return 1 else: return 0 a = C.initVars(a, 'tag', F, ['CoordinateX', 'CoordinateY', 'CoordinateZ']) f = P.frontFaces(a, 'tag'); f[0] = 'front' t = C.newPyTree(['Base']); t[2][1][2] += [a, f] C.convertPyTree2File(t, 'out.cgns')
-
Post.
sharpEdges
(A, alphaRef=30.) Return sharp edges arrays starting from surfaces or contours. Adjacent cells having an angle deviating from more than alphaRef to 180 degrees are considered as sharp.
- Parameters
A ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
alphaRef (float) – split angle
- Return type
list of arrays / zones ??
Example of use:
# - sharpEdges ( array) - import Converter as C import Generator as G import Post as P import Transform as T a1 = G.cart((0.,0.,0.),(1.5,1.,1.),(2,2,1)) a2 = T.rotate(a1,(0.,0.,0.),(0.,1.,0.),100.) res = P.sharpEdges([a1,a2],alphaRef=45.) C.convertArrays2File([a1,a2]+res,"out.plt")
# - sharpEdges (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P import Transform.PyTree as T a1 = G.cart((0.,0.,0.),(1.5,1.,1.),(2,2,1)) a2 = T.rotate(a1,(0.,0.,0.),(0.,1.,0.),100.);a2[0] = 'cart2' res = P.sharpEdges([a1,a2],alphaRef=45.) t = C.newPyTree(['Edge',1,'Base',2]); t[2][1][2] += res; t[2][2][2]+=[a1,a2] C.convertPyTree2File(t,"out.cgns")
-
Post.
silhouette
(A, vector=[1.,0.,0.]) return silhouette arrays starting from surfaces or contours, according to a direction vector.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
vector (3-tuple of floats) – direction vector
- Return type
identical to input
Example of use:
# - silhouette ( array) - import Generator as G import Converter as C import Post as P a = G.cylinder((0.,0.,0.), 0.5, 1., 360., 0., 10., (50,1,30)) vector=[1.,0.,0.] res = P.silhouette([a], vector) l = [a]+res C.convertArrays2File(l, 'out.plt')
# - silhouette (pyTree) - import Generator.PyTree as G import Converter.PyTree as C import Post.PyTree as P a = G.cylinder((0.,0.,0.), 0.5, 1., 360., 0., 10., (50,1,30)) t = C.newPyTree(['Base']); t[2][1][2].append(a) vector=[1.,0.,0.] res = P.silhouette(a, vector) t[2][1][2] += res C.convertPyTree2File(t, 'out.cgns')
-
Post.
coarsen
(a, indicName='indic', argqual=0.25, tol=1.e-6) Coarsen a triangle mesh by providing a coarsening indicator, which is 1 if the element must be coarsened, 0 elsewhere. Triangles are merged by edge contraction, if tagged to be coarsened by indic and if new triangles deviate less than tol to the original triangle. Required mesh quality is controled by argqual: argqual equal to 0.5 corresponds to an equilateral triangle, whereas a value near zero corresponds to a bad triangle shape.
Array version: an indic i-array must be provided, whose dimension ni is equal to the number of elements in the initial triangulation:
b = P.coarsen(a, indic, argqual=0.1, tol=1.e6)
- Parameters
a (array, list of arrays) – input data
indic (i-array) – tagged element (0 or 1)
- Return type
identical to input
PyTree version: indic is stored as a solution located at centers:
b = P.coarsen(a, indicName='indic', argqual=0.25, tol=1.e-6)
- Parameters
a (pyTree, base, zone, list of zones) – input data
indicName (string) – tag variable name
- Return type
identical to input
Example of use:
# - coarsen (array) - import Post as P import Converter as C import Generator as G import Transform as T # coarsen all cells of a square ni = 21; nj = 21; nk = 11 hi = 2./(ni-1); hj = 2./(nj-1); hk = 1./(nk-1) m = G.cart((0.,0.,0.),(hi,hj,hk), (ni,nj,nk)) hi = hi/2; hj = hj/2; hk = hk/2 m2 = G.cart((0.,0.,0.),(hi,hj,hk), (ni,nj,nk)) m2 = T.subzone(m2,(3,3,6),(m[2]-2,m[3]-2,6)) m2 = T.translate(m2, (0.75,0.75,0.25)) m2 = T.perturbate(m2, 0.51) tri = G.delaunay(m2) npts = tri[2].shape[1] indic = C.array('indic', npts, 1, 1) indic = C.initVars(indic, 'indic', 1) sol = P.coarsen(tri, indic, argqual=0.25, tol=1.e6) C.convertArrays2File([tri, sol], 'out.plt')
# - coarsen (pyTree)- import Post.PyTree as P import Converter.PyTree as C import Generator.PyTree as G import Transform.PyTree as T ni = 21; nj = 21; nk = 1 hi = 2./(ni-1); hj = 2./(nj-1) m = G.cart((0.,0.,0.),(hi,hj,1.), (ni,nj,nk)); m = T.perturbate(m, 0.51) tri = G.delaunay(m); tri = C.initVars(tri, 'centers:indic', 1.) sol = P.coarsen(tri, 'indic'); sol[0] = 'coarse' C.convertPyTree2File([sol,tri], 'out.cgns')
-
Post.
refine
() Refine a triangle mesh by providing a refinement indicator, which is 1 if the element must be refined, 0 elsewhere.
Array version: an indic i-array must be provided, whose dimension ni is equal to the number of elements in the initial triangulation:
b = P.refine(a, indic)
PyTree version: indic is stored as a solution located at centers:
b = P.refine(a, indicName='indic')
Example of use:
# - refine (array) - import Post as P import Converter as C import Generator as G # Using indic (linear) a = G.cartTetra((0,0,0), (1,1,1), (10,10,1)) indic = C.array('indic', a[2].shape[1], 1, 1) indic = C.initVars(indic, 'indic', 0) C.setValue(indic, 50, [1]) C.setValue(indic, 49, [1]) a = P.refine(a, indic) C.convertArrays2File(a, 'out.plt') # Using butterfly a = G.cartTetra((0,0,0), (2,1,1), (3,3,3)) a = P.exteriorFaces(a) #a = C.initVars(a, "z = 0.1*{x}*{x}+0.2*{y}") for i in range(6): a = P.refine(a, w=1./64.) C.convertArrays2File(a, 'out.plt')
# - refine (pyTree) - import Post.PyTree as P import Converter.PyTree as C import Generator.PyTree as G # Linear with indicator field a = G.cartTetra((0,0,0), (1,1,1), (10,10,1)) a = C.initVars(a, 'centers:indic', 1.) a = P.refine(a, 'indic') C.convertPyTree2File(a, 'out.cgns')
-
Post.
refine
(a, w=1./64.) Refine a triangle mesh every where using butterfly interpolation with coefficient w.
Example of use:
# - refine (array) - import Post as P import Converter as C import Generator as G # Refine using butterfly a = G.cartTetra((0,0,0), (2,1,1), (3,3,3)) a = P.exteriorFaces(a) for i in range(5): a = P.refine(a, w=1./64.) C.convertArrays2File(a, 'out.plt')
# - refine (pyTree) - import Post.PyTree as P import Converter.PyTree as C import Generator.PyTree as G # Refine with butterfly interpolation a = G.cartTetra((0,0,0), (1,1,1), (10,10,1)) a = P.refine(a, w=1./64.) C.convertPyTree2File(a, 'out.cgns')
-
Post.
computeIndicatorValue
(a, t, varName) Compute the indicator value on the unstructured octree mesh a based on the absolute maximum value of a varName field defined in the corresponding structured octree t. In the array version, t is a list of zones, and in the pyTree version, it can be a tree or a base or a list of bases or a zone or a list of zones. Variable varName can be located at nodes or centers. The resulting projected field is stored at centers in the octree mesh.
Example of use:
# - compIndicatorValue(array) - import Generator as G import Converter as C import Geom as D import Post as P s = D.circle((0,0,0),1.) snear = 0.1 o = G.octree([s], [snear], dfar=10., balancing=0) res = G.octree2Struct(o, vmin=11,merged=0) vol = G.getVolumeMap(res); res = C.node2Center(res) val = P.computeIndicatorValue(o,res,vol) o = C.addVars([o,val]) C.convertArrays2File([o], "out.plt")
# - compIndicatorValue(pyTree) - import Generator.PyTree as G import Converter.PyTree as C import Geom.PyTree as D import Post.PyTree as P s = D.circle((0,0,0),1.) snear = 0.1 o = G.octree([s], [snear], dfar=10., balancing=1) res = G.octree2Struct(o, vmin=11,merged=1) res = G.getVolumeMap(res) o = P.computeIndicatorValue(o,res,'centers:vol') t = C.newPyTree(['Base']); t[2][1][2] +=[o] C.convertPyTree2File(t,"out.cgns")
-
Post.
computeIndicatorField
() compute an indicator field to adapt an octree mesh with respect to the required number of points nbTargetPts, a field, and bodies. If refineFinestLevel=1, the finest level of the octree o is refined. If coarsenCoarsestLevel=1, the coarsest level of the octree o is coarsened provided the balancing is respected.<br> This function computes epsInf, epsSup, indicator such that when indicVal < valInf, the octree is coarsened (indicator=-1), when indicVal > valSup, the octree is refined (indicator=1).
For an octree defined in an array o, and the field in indicVal:
indicator, valInf, valSup = P.computeIndicatorField(o, indicVal, nbTargetPts=-1, bodies=[], refineFinestLevel=1, coarsenCoarsestLevel=1)
For the pyTree version, the name varname of the field on which is based the indicator must be specified:
o, valInf, valSup = P.computeIndicatorField(o, varname, nbTargetPts=-1, bodies=[], refineFinestLevel=1, coarsenCoarsestLevel=1)
Example of use:
# - compIndicatorField (array) - import Generator as G import Converter as C import Geom as D import Post as P s = D.circle((0,0,0), 1., N=100); snear = 0.1 o = G.octree([s], [snear], dfar=10., balancing=1) npts = len(o[1][0]) indicVal = G.getVolumeMap(o) indicator, valInf, valSup = P.computeIndicatorField( o, indicVal, nbTargetPts=2.*npts, bodies=[s]) indicator = C.center2Node(indicator) o = C.addVars([o, indicator]) C.convertArrays2File(o, "out.plt")
# - compIndicatorField (pyTree) - import Generator.PyTree as G import Converter.PyTree as C import Geom.PyTree as D import Post.PyTree as P #---------------------- # indicateur en centres #---------------------- s = D.circle((0,0,0), 1., N=100); snear = 0.1 o = G.octree([s], [snear], dfar=10., balancing=1) npts = o[1][0][0] o = G.getVolumeMap(o) o, valInf, valSup = P.computeIndicatorField(o, 'centers:vol', nbTargetPts=2*npts, bodies=[s]) C.convertPyTree2File(o, 'out.cgns')
Solution extraction
-
Post.
extractPoint
(A, (x, y, z), order=2, constraint=40., tol=1.e-6, hook=None) Extract the field in one or several points, given a solution defined by A. The extracted field(s) is returned as a list of values for each point. If the point (x,y,z) is not interpolable from a grid, then 0 for all fields is returned.
To extract field in several points use:
F = P.extractPoint(A, [(x1,y1,z1),(x2,y2,z2)], order=2, constraint=40., tol=1.e-6, hook=None)
In the pyTree version, extractPoint returns the extracted solution from solutions located at nodes followed by the solution extracted from solutions at centers.
If ‘cellN’, ‘ichim’, ‘cellnf’, ‘status’, or ‘cellNF’ variable is defined, it is returned in the last position in the output array. The interpolation order can be 2, 3, or 5.
‘constraint’ is a thresold for extrapolation to occur. To enable more extrapolation, rise this value.
If some blocks in A define surfaces, a tolerance ‘tol’ for interpolation cell search can be defined.
A hook can be defined in order to keep in memory the ADT on the interpolation cell search. It can be built and deleted by createHook and freeHook functions in Converter module, using ‘extractMesh’ function.
Example of use:
# - extractPoint (array) - import Converter as C import Generator as G import Post as P ni = 10; nj = 10; nk = 10; a = G.cart((0,0,0), (1./(ni-1),1./(nj-1),1./(nk-1)), (ni,nj,nk)) def F(x,y,z): return x*x*x*x + 2.*y + z*z a = C.initVars(a, 'F', F, ['x','y','z']) # Utilisation directe val = P.extractPoint([a], (0.55, 0.38, 0.12), 2); print(val) # Utilisation avec un hook hook = C.createHook([a], function='extractMesh') val = P.extractPoint([a], (0.55, 0.38, 0.12), 2, hook=hook); print(val)
# - extractPoint (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P ni = 10; nj = 10; nk = 10; a = G.cart((0,0,0), (1./(ni-1),1./(nj-1),1./(nk-1)), (ni,nj,nk)) def F(x,y,z): return x + 2.*y + 3.*z a = C.initVars(a, 'F', F, ['CoordinateX','CoordinateY','CoordinateZ']) # Utilisation directe val = P.extractPoint(a, (0.55, 0.38, 0.12), 2); print(val) # Utilisation avec un hook hook = C.createHook(a, function='extractMesh') val = P.extractPoint(a, (0.55, 0.38, 0.12), 2, hook=hook); print(val)
-
Post.
extractPlane
(A, (c1, c2, c3, c4), order=2, tol=1.e-6) slice a solution A with a plane. The extracted solution is interpolated from A. Interpolation order can be 2, 3, or 5 (but the 5th order is very time-consuming for the moment). The best solution is kept. Plane is defined by \(c1\ x + c2\ y + c3\ z + c4 = 0\).
Example of use:
# - extractPlane (array) - import Converter as C import Post as P import Transform as T import Generator as G m = G.cylinder((0,0,0), 1, 5, 0., 360., 10., (50,50,50)) m = T.rotate(m , (0,0,0), (1,0,0), 35.) a = P.extractPlane([m], (0.5, 1., 0., 1), 2) C.convertArrays2File([m,a], "out.plt")
# - extractPlane (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Transform.PyTree as T import Generator.PyTree as G m = G.cylinder((0,0,0), 1, 5, 0., 360., 10., (50,50,50)) m = T.rotate(m, (0,0,0), (1,0,0), 35.) m = C.initVars(m,'Density',1); m = C.initVars(m,'centers:cellN',1) z = P.extractPlane(m, (0.5, 1., 0., 1), 2) C.convertPyTree2File(z, 'out.cgns')
-
Post.
extractMesh
(A, a, order=2, extrapOrder=1, constraint=40., tol=1.e-6, mode='robust', hook=None) Interpolate a solution from a set of donor zones defined by A to an extraction zone a. Parameter order can be 2, 3 or 5, meaning that 2nd, 3rd and 5th order interpolations are performed.
Parameter ‘constraint’>0 enables to extrapolate from A if interpolation is not possible for some points. Extrapolation order can be 0 or 1 and is defined by extrapOrder.
If mode=’robust’, extract from the node mesh (solution in centers is first put to nodes, resulting interpolated solution is located in nodes).
If mode=’accurate’, extract node solution from node mesh and center solution from center mesh (variables don’t change location).
The interpolation cell search can be preconditioned if extractMesh is applied several times using the same donor mesh. Parameter hook is only used in ‘robust’ mode and is a list of ADT (one per donor zone), each of them must be created and deleted by C.createHook and C.freeHook (see Converter module userguide).
Exists also as in place version (_extractMesh) that modifies a and return None.
Example of use:
# - extractMesh (array) - import Converter as C import Post as P import Generator as G ni = 30; nj = 40; nk = 10 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) m = C.initVars(m, 'ro', 1.) # Create extraction mesh a = G.cart((0.,0.,0.), (1., 0.1, 0.1), (20, 20, 1)) # Extract solution on extraction mesh a2 = P.extractMesh([m], a) C.convertArrays2File([m,a2], 'out.plt')
# - extractMesh (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G ni = 30; nj = 40; nk = 10 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)) C._initVars(m, 'Density', 2.) C._initVars(m, 'centers:cellN', 1) # Extraction mesh a = G.cart((0.,0.,0.5), (1., 0.1, 1.), (20, 20, 1)); a[0] = 'extraction' # Extract solution on extraction mesh a = P.extractMesh(m, a) t = C.newPyTree(['Solution', 3, 'Extraction', 2]) t[2][1][2].append(m); t[2][2][2] += [a] C.convertPyTree2File(a, 'out.cgns')
-
Post.
projectCloudSolution
(pts, t, dim=3) Project the solution by a Least-Square Interpolation defined on a set of points pts defined as a ‘NODE’ zone to a body defined by a ‘TRI’ mesh in 3D and ‘BAR’ mesh in 2D.
Example of use:
# -projectCloudSolution (array) import Converter as C import Geom as D import Post as P import Transform as T import Generator as G a = D.sphere((0,0,0),1.,N=20) a = C.convertArray2Tetra(a); a = G.close(a) b = D.sphere6((0,0,0),1.,N=15) b = C.convertArray2Tetra(b); b = T.join(b) pts = C.convertArray2Node(b) pts = C.initVars(pts,'{F}={x}*{y}') a = C.initVars(a,'F', 0.) a = P.projectCloudSolution(pts,a) C.convertArrays2File(a,"out.plt")
# -projectCloudSolution (pyTree) import Converter.PyTree as C import Geom.PyTree as D import Post.PyTree as P import Transform.PyTree as T import Generator.PyTree as G a = D.sphere((0,0,0),1.,N=20) a = C.convertArray2Tetra(a); a = G.close(a) b = D.sphere6((0,0,0),1.,N=15) b = C.convertArray2Tetra(b); b = T.join(b) pts = C.convertArray2Node(b) C._initVars(pts,'{F}={CoordinateX}*{CoordinateY}') C._initVars(a,'F', 0.) a = P.projectCloudSolution(pts,a) C.convertPyTree2File(a, "out.cgns")
-
Post.
zipper
(A, options=[]) Build an unstructured unique surface mesh, given a list of structured overlapping surface grids A. Cell nature field is used to find blanked (0) and interpolated (2) cells.
The options argument is a list of arguments such as [“argName”, argValue]. Option names can be:
‘overlapTol’ for tolerance required between two overlapping grids : if the projection distance between them is under this value then the grids are considered to be overset. Default value is 1.e-5.
For some cases, ‘matchTol’ can be set to modify the matching boundaries tolerance. Default value is set 1e-6.
In most cases, one needn’t modify this parameter.
Example of use:
# - zipper (array) - import Converter as C import Post as P import Generator as G import Transform as T m1 = G.cylinder((0,0,0), 1, 5, 0., 360., 10., (50,50,1)) m1 = C.initVars(m1, 'cellN', 1.) # Set cellN = 2 (interpolated points) to boundary s = T.subzone(m1, (1,m1[3],1),(m1[2],m1[3],m1[4])) s = C.initVars(s, 'cellN', 2) m1 = T.patch(m1, s, (1,m1[3],1)) s = T.subzone(m1, (1,1,1),(m1[2],1,m1[4])) s = C.initVars(s, 'cellN', 2) m1 = T.patch(m1, s, (1,1,1)) ni = 30; nj = 40 m2 = G.cart((0,0,0), (10./(ni-1),10./(nj-1),-1), (ni,nj,1)) m2 = C.initVars(m2, 'cellN', 1.) array = P.zipper([m1,m2],[]) C.convertArrays2File([array], 'out.plt')
# - zipper (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G import Transform.PyTree as T # cylindre ni = 30; nj = 40; nk = 1 m1 = G.cylinder((0,0,0), 1, 5, 0., 360., 10., (ni,nj,nk)) m1 = C.addVars(m1, 'Density'); m1 = C.initVars(m1,'cellN',1) # Set cellN = 2 (interpolated points) to boundary s = T.subzone(m1, (1,nj,1),(ni,nj,nk)) s = C.initVars(s, 'cellN', 2) m1 = T.patch(m1, s, (1,nj,1)) s = T.subzone(m1, (1,1,1),(ni,1,nk)) s = C.initVars(s, 'cellN', 2) m1 = T.patch(m1, s, (1,1,1)) # carre ni = 30; nj = 40 m2 = G.cart((0,0,0), (10./(ni-1),10./(nj-1),-1), (ni,nj,1)) m2 = C.initVars(m2, 'Density', 1.2); m2 = C.initVars(m2, 'cellN', 1.) t = C.newPyTree(['Base',2]); t[2][1][2] += [m1, m2] z = P.zipper(t); z[0] = 'zipper'; t[2][1][2].append(z) C.convertPyTree2File(t, 'out.cgns')
-
Post.
usurp
(A) This function computes a ratio field for structured overlapping surfaces. The ratio field is located at cell centers. In case of no overset, ratio are set to 1, otherwise ratio represents the percentage of overlap of a cell by another mesh. The finest cells have priority. All surfaces must be oriented in the same way.
When using the array interface:
C = P.usurp(A, B)
the input arrays are a list of grid arrays A, defining nodes coordinates and a corresponding list of arrays defining the chimera nature of cells at cell centers B. Blanked cells must be flagged by a null value. Other values are equally considered as computed or interpolated cells.
When using the pyTree interface:
C = P.usurp(A)
chimera cell nature field must be defined as a center field in A.
Warning: normal of surfaces grids defined by A must be oriented in the same direction.
Example of use:
# - usurp (array) - import Post as P import Converter as C import Generator as G import Transform as T cyln = [] a1 = G.cylinder((0,0,0), 0, 2, 360, 0, 1., (100,2,10)) a1 = T.subzone(a1, (1,2,1), (a1[2],2,a1[4])) cyln.append(a1) # a2 = G.cylinder((0,0,0), 0, 2, 90, 0, 0.5, (10,2,10)) a2 = T.translate(a2, (0,0,0.2)) a2 = T.subzone(a2, (1,2,1), (a2[2],2,a2[4])) cyln.append(a2) # c1 = cyln[0] ib1 = C.array('cellN', c1[2]-1, c1[3], c1[4]-1) ib1 = C.initVars(ib1,'cellN', 1) ib1[1][0,586] = 0. # c2 = cyln[1] ib2 = C.array('cellN', c2[2]-1, c2[3], c2[4]-1) ib2 = C.initVars(ib2, 'cellN', 1) ibc = [ib1, ib2]; r = P.usurp(cyln, ibc) cylc = C.node2Center(cyln) out = [] l = len(cylc) for i in range(l) : out.append(C.addVars([cylc[i], ibc[i]])) C.convertArrays2File(out, 'outc.plt')
# - usurp (pyTree)- import Post.PyTree as P import Converter.PyTree as C import Generator.PyTree as G import Transform.PyTree as T a1 = G.cylinder((0,0,0), 0, 2, 360, 0, 1., (100,2,10)) a1 = T.subzone(a1, (1,2,1), (100,2,10)); a1[0]='cyl1' a2 = G.cylinder((0,0,0), 0, 2, 90, 0, 0.5, (10,2,10)) a2 = T.translate(a2, (0,0,0.2)) a2 = T.subzone(a2, (1,2,1),(10,2,10)); a2[0]='cyl2' a1 = C.initVars(a1, 'centers:cellN',1.) a2 = C.initVars(a2, 'centers:cellN',1.) t = C.newPyTree(['Base',2]); t[2][1][2] += [a1, a2] t = P.usurp(t) C.convertPyTree2File(t, 'out.cgns')
Streams
-
Post.
streamLine
(A, (x0, y0, z0), ['v1', 'v2, 'v3', ]N=2000, dir=2) Compute the stream line with N points starting from point (x0,y0,z0), given a solution A and a vector defined by 3 variables [‘v1’,’v2,’v3’]. Parameter ‘dir’ can be set to 1 (streamline follows velocity), -1 (streamline follows -velocity), or 2 (streamline expands in both directions). The output yields the set of N extracted points on the streamline, and the input fields at these points. The streamline computation stops when the current point is not interpolable from the input grids.
Example of use:
# - streamLine (array) - import Converter as C import Post as P import Generator as G import math as M ni = 30; nj = 40 m1 = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,2)) m2 = G.cart((5.5,0,0), (9./(ni-1),9./(nj-1),1), (ni,nj,2)) def F(x): return M.cos(x) m = [m1,m2] m = C.initVars(m, 'rou', 1.) m = C.initVars(m, 'rov', F, ['x']) m = C.initVars(m, 'row', 0.) x0=0.1; y0=5.; z0=0.5; p = P.streamLine(m, (x0,y0,z0),['rou','rov','row']) C.convertArrays2File(m+[p], 'out.plt')
# - streamLine (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G import math as M def F(x): return M.cos(x) ni = 30; nj = 40 m1 = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,2)) m2 = G.cart((5.5,0,0), (9./(ni-1),9./(nj-1),1), (ni,nj,2)) t = C.newPyTree(['Base','StreamR']); t[2][1][2] = [m1,m2] t = C.initVars(t, 'vx', 1.) t = C.initVars(t, 'vy', F, ['CoordinateX']) t = C.initVars(t, 'vz', 0.) x0=0.1; y0=5.; z0=0.5 p = P.streamLine(t, (x0,y0,z0),['vx','vy','vz']) C.convertPyTree2File(p, "out.cgns")
-
Post.
streamRibbon
(A, (x0, y0, z0), (nx, ny, nz), ['v1', 'v2', 'v3', ]N=2000, dir=2)
- 0 Compute the stream ribbon starting from point (x0,y0,z0), of width and direction given by the vector (nx,ny,nz).
This vector must be roughly orthogonal to the vector [‘v1’, ‘v2’, ‘v3’] at point (x0,y0,z0). The output yields the set of N extracted points on the stream ribbon, and the input fields at these points. The stream ribbon computation stops when the current point is not interpolable from the input grids.
Example of use:
# - streamRibbon (array) - import Converter as C import Post as P import Generator as G import math as M ni = 30; nj = 40 def F(x): return M.cos(x) m1 = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,2)) m2 = G.cart((5.5,0,0), (9./(ni-1),9./(nj-1),1), (ni,nj,2)) m = [m1,m2] m = C.initVars(m, 'rou', 1.) m = C.initVars(m, 'rov', F, ['x']) m = C.initVars(m, 'row', 0.) x0=0.1; y0=5.; z0=0.5; p = P.streamRibbon(m, (x0,y0,z0),(0.,0.2,0.),['rou','rov','row']) C.convertArrays2File(m+[p], 'out.plt')
# - streamRibbon (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G import math as M def F(x): return M.cos(x) ni = 30; nj = 40 m1 = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,2)) m2 = G.cart((5.5,0,0), (9./(ni-1),9./(nj-1),1), (ni,nj,2)) t = C.newPyTree(['Base','StreamR']); t[2][1][2] = [m1,m2] t = C.initVars(t, 'vx', 1.) t = C.initVars(t, 'vy', F, ['CoordinateX']) t = C.initVars(t, 'vz', 0.) x0=0.1; y0=5.; z0=0.5 p = P.streamRibbon(t, (x0,y0,z0),(0.,0.2,0.),['vx','vy','vz']) C.convertPyTree2File(p, "out.cgns")
-
Post.
streamSurf
(A, c, ['v1', 'v2, 'v3', ]N=2000, dir=1) Compute the stream surface starting from a BAR array c.
Example of use:
# - streamSurf (array) - import Converter as C import Post as P import Generator as G import Geom as D import math as M ni = 30; nj = 40 # Node mesh m1 = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,5)) m2 = G.cart((5.5,0,0), (9./(ni-1),9./(nj-1),1), (ni,nj,5)) b = D.line((0.1,5.,0.1), (0.1,5.,3.9), N=10) b = C.convertArray2Tetra(b) m = [m1,m2] def F(x): return M.cos(x) m = C.initVars(m, 'rou', 1.) m = C.initVars(m, 'rov', F, ['x']) m = C.initVars(m, 'row', 0.) p = P.streamSurf(m, b,['rou','rov','row']) C.convertArrays2File(m+[p], 'out.plt')
# - streamSurf (pyTree) - import Converter.PyTree as C import Post.PyTree as P import Generator.PyTree as G import Geom.PyTree as D ni = 30; nj = 40; nk = 5 m1 = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,nk)); m1[0] = 'cart1' m2 = G.cart((5.5,0,0), (9./(ni-1),9./(nj-1),1), (ni,nj,nk)); m2[0] = 'cart2' b = D.line((0.1,5.,0.1), (0.1,5.,3.9), N=10) b = C.convertArray2Tetra(b) t = C.newPyTree(['Base',m1,m2]) t = C.initVars(t, 'vx', 1.) t = C.initVars(t, '{vy}=cos({CoordinateX})') t = C.initVars(t, 'vz', 0.) x0=0.1; y0=5.; z0=0.5 p = P.streamSurf(t, b, ['vx','vy','vz']) C.convertPyTree2File(p, "out.cgns")
Isos
-
Post.
isoLine
(A, field, val) Compute an isoline correponding to value val of field.
Example of use:
# - isoLine (array) - import Post as P import Converter as C import Generator as G def F(x, y): return x*x+y*y a = G.cartTetra((0,0,0), (1,1,1), (10,10,1)) a = C.initVars(a, 'field', F, ['x','y']) isos = [] min = C.getMinValue(a, 'field') max = C.getMaxValue(a, 'field') for v in range(20): value = min + (max-min)/18.*v try: i = P.isoLine(a, 'field', value) if i != []: isos.append(i) except: pass C.convertArrays2File([a]+isos, 'out.plt')
# - isoLine (pyTree) - import Post.PyTree as P import Converter.PyTree as C import Generator.PyTree as G def F(x, y): return x*x+y*y a = G.cartTetra( (0,0,0), (1,1,1), (10,10,1)) a = C.initVars(a, 'field', F, ['CoordinateX','CoordinateY']) isos = [] min = C.getMinValue(a, 'field') max = C.getMaxValue(a, 'field') for v in range(20): value = min + (max-min)/18.*v try: i = P.isoLine(a, 'field', value) isos.append(i) except: pass t = C.newPyTree(['Base',3,'ISOS',1]) t[2][1][2].append(a) t[2][2][2] += isos C.convertPyTree2File(t, 'out.cgns')
-
Post.
isoSurf
(a, field, val, split='simple', vars=None) Compute an isosurface corresponding to value val of field (using marching tetrahedra). Resulting solution is always located in nodes. Return a list of two zones (one TRI and one BAR, if relevant). If vars (for ex: [‘centers:F’, ‘G’]) is given, extract only given variables.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
field (string) – field name used in iso computation
val (float) – value of field for extraction
split (string) – ‘simple’ or ‘withBarycenters’, used in decomposing a in tetra (if needed)
vars (list of strings) – list of variable names you want to see on final iso-surface
Example of use:
# - isoSurf (array) - import Post as P import Converter as C import Generator as G a = G.cartTetra((-20,-20,-20), (0.25,0.25,0.5), (100,100,50)) a = C.initVars(a, '{field}={x}*{x}+{y}*{y}+{z}') iso = P.isoSurf(a, 'field', value=5.) C.convertArrays2File(iso, 'out.plt')
# - isoSurf (pyTree) - import Post.PyTree as P import Converter.PyTree as C import Generator.PyTree as G a = G.cartTetra((-20,-20,-20), (0.5,0.5,0.5), (50,50,50)) a = C.initVars(a, '{field}={CoordinateX}*{CoordinateX}+{CoordinateY}*{CoordinateY}+{CoordinateZ}') iso = P.isoSurf(a, 'field', value=5.) C.convertPyTree2File(iso, 'out.cgns')
-
Post.
isoSurfMC
(a, field, val, split='simple', vars=None) Compute an isosurface correponding to value val of field (using marching cubes). Resulting solution is always located in nodes. If vars (for ex: [‘centers:F’, ‘G’]) is given, extract only given variables.
- Parameters
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
field (string) – field name used in iso computation
val (float) – value of field for extraction
split (string) – ‘simple’ or ‘withBarycenters’, used in decomposing a in tetra (if needed)
vars (list of strings) – list of variable names you want to see on final iso-surface
Example of use:
# - isoSurfMC (array) - import Post as P import Converter as C import Generator as G a = G.cartHexa((-20,-20,-20), (0.25,0.25,0.5), (100,100,50)) a = C.initVars(a, '{field}={x}*{x}+{y}*{y}+{z}') iso = P.isoSurfMC(a, 'field', value=5.) C.convertArrays2File(iso, 'out.plt')
# - isoSurfMC (pyTree) - import Post.PyTree as P import Converter.PyTree as C import Generator.PyTree as G a = G.cartHexa((-20,-20,-20), (0.5,0.5,0.5), (50,50,50)) a = C.initVars(a, '{field}={CoordinateX}*{CoordinateX}+{CoordinateY}*{CoordinateY}+{CoordinateZ}') iso = P.isoSurfMC(a, 'field', value=5.) C.convertPyTree2File(iso, 'out.cgns')
Solution integration
For all integration functions, the interface is different when using Converter arrays interface or pyTree interface. For arrays, fields must be input separately, for pyTree, they must be defined in each zone.
-
Post.
integ
(A, var='') compute the integral of a scalar field (whose name is varString) over the geometry defined by arrays containing the coordinates + field ( + an optional ratio ). Solution and ratio can be located at nodes or at centers. For array interface:
res = P.integ([coord], [field], [ratio]=[])
For pyTree interface, the variable to be integrated can be specified. If no variable is specified, all the fields located at nodes and centers are integrated:
res = P.integ(A, var='')
Example of use:
# - integ (array) - import Converter as C import Generator as G import Post as P # Node mesh ni = 30; nj = 40 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,1)) # Field in centers c = C.array('vx', ni-1, nj-1, 1); c = C.initVars(c, 'vx', 1.) resc = P.integ([m], [c], [])[0]; print(resc) # Field in nodes cn = C.array('vx', ni, nj, 1); cn = C.initVars(cn, 'vx', 1.) resn = P.integ([m], [cn], [])[0]; print(resn)
# - integ (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P ni = 30; nj = 40 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,1)) C._initVars(m, 'vx', 1.); C._initVars(m, 'ratio', 1.) resn = P.integ(m, 'vx'); print(resn)
-
Post.
integNorm
(A, var='') Compute the integral of each scalar field times the surface normal over the geometry defined by coord. For array interface:
P.integNorm([coord], [field], [ratio]=[])
For pyTree interface, the variable to be integrated can be specified. If no variable is specified, all the fields located at nodes and centers are integrated:
P.integNorm(A, var='')
Example of use:
# - integNorm (array) - import Converter as C import Generator as G import Post as P # Node mesh and field m = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) c1 = C.array('ro', 100, 162, 'TRI') c = C.initVars(c1, 'ro', 1.) res = P.integNorm([m], [c], []); print('res1 = %f'%res) # Node mesh ni = 30; nj = 40 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,1)) # Centers field c1 = C.array('vx', ni-1, nj-1, 1) c = C.initVars(c1, 'vx', 1.) # Integration res = P.integNorm([m], [c], []); print('res2 = %f'%res) # Node field c1 = C.array('vx, vy', ni, nj, 1) cn = C.initVars(c1, 'vx', 1.) cn = C.initVars(c1, 'vy', 1.) resn = P.integNorm([m], [cn], []); print('res3 = %f'%resn)
# - integNorm (pyTree)- import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P # Node mesh m = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) m = C.initVars(m, 'Density', 1.) t = C.newPyTree(['Base',2,m]) res = P.integNorm(t, 'Density'); print(res)
-
Post.
integNormProduct
(A, vector=[]) Compute the integral of a vector field times the surface normal over the geometry defined by coord. The input field must have 3 variables. For array interface, field must be a vector field:
res = P.integNormProduct([coord], [field], [ratio]=[])
For pyTree interface, the vector field to be integrated must be specified:
res = P.integNormProduct(A, vector=[])
Example of use:
# - integNormProduct (array) - import Converter as C import Generator as G import Post as P # Maillage et champs non structure, en noeuds m = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) c = C.array('vx,vy,vz', m[1].shape[1], m[2].shape[1], 'TRI') c = C.initVars(c, 'vx,vy,vz', 1.) res = P.integNormProduct([m], [c], []); print(res) # Maillage en noeuds ni = 30; nj = 40 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,1)) # Champ a integrer en centres c = C.array('vx,vy,vz', ni-1, nj-1, 1) c = C.initVars(c, 'vx,vy,vz', 1.) # Integration de chaque champ res = P.integNormProduct([m], [c], []); print(res) # Champ a integrer en noeuds cn = C.array('vx,vy,vz', ni, nj, 1) cn = C.initVars(cn, 'vx,vy,vz', 1.) resn = P.integNormProduct([m], [cn], []); print(resn)
# - integNormProduct (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P ni = 30; nj = 40 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,1)) m = C.initVars(m,'MomentumX',1.) m = C.initVars(m,'MomentumY',1.) m = C.initVars(m,'MomentumZ',1.) res = P.integNormProduct(m,['MomentumX','MomentumY','MomentumZ']); print(res)
-
Post.
integMoment
(A, center=(0., 0., 0.), vector=[]) Compute the integral of a moment over the geometry defined by coord. The input field must have 3 variables. (cx,cy,cz) are the center coordinates. For array interface:
res = P.integMoment([coord], [field], [ratio]=[], center=(0.,0.,0.))
For pyTree interface, the vector of variables to be integrated must be specified:
res = P.integMoment(A, center=(0.,0.,0.), vector=[])
Example of use:
# - integMoment (array) - import Converter as C import Generator as G import Post as P # Maillage et champs non structure, en noeuds m = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) c = C.array('vx,vy,vz', 100, 162, 'TRI') c = C.initVars(c, 'vx,vy,vz', 1.) res = P.integMoment([m], [c], [], (5.,5., 0.)); print(res) # Maillage en noeuds ni = 30; nj = 40 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,1)) C.convertArrays2File([m], "new.plt", "bin_tp") # Champ a integrer en centres c = C.array('vx,vy,vz', ni-1, nj-1, 1) c = C.initVars(c, 'vx,vy,vz', 1.) # Integration de chaque champ res = P.integMoment([m], [c], [], (5.,5., 0.) ); print(res) # Champ a integrer en noeuds cn = C.array('vx,vy,vz', ni, nj, 1) cn = C.initVars(cn, 'vx,vy,vz', 1.) resn = P.integMoment([m], [cn], [], (5.,5., 0.)); print(resn)
# - integMoment (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P m = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) C._initVars(m,'vx',1.); C._initVars(m,'vy',0.); C._initVars(m,'vz',0.) res = P.integMoment(m, center=(5.,5., 0.),vector=['vx','vy','vz']); print(res)
-
Post.
integMomentNorm
(A, center=(cx, cy, cz), var='') Compute the integral of a moment over the geometry defined by coord, taking into account the surface normal. The input field is a scalar. For array interface:
res = P.integMomentNorm([coord], [field], [ratio]=[], center=(cx,cy,cz))
For pyTree interface, the variable to be integrated can be specified. If no variable is specified, all the fields located at nodes and centers are integrated:
res = P.integMomentNorm(A, center=(cx,cy,cz), var='')
Example of use:
# - integMomentNorm (array) - import Converter as C import Generator as G import Post as P # Maillage et champs non structure, en noeuds m = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) c = C.array('ro', 100, 162, 'TRI') c = C.initVars(c, 'ro', 1.) res = P.integMomentNorm([m], [c], [], (5.,5., 0.)); print(res) # Maillage en noeuds ni = 30; nj = 40 m = G.cart((0,0,0), (10./(ni-1),10./(nj-1),1), (ni,nj,1)) # Champ a integrer en centres c = C.array('v', ni-1, nj-1, 1) c = C.initVars(c, 'v', 1.) # Integration de chaque champ res = P.integMomentNorm([m], [c], [], (5.,5., 0.) ); print(res) # Champ a integrer en noeuds cn = C.array('v', ni, nj, 1) cn = C.initVars(cn, 'v', 1.) resn = P.integMomentNorm([m], [cn], [], (5.,5., 0.)); print(resn)
# - integMomentNorm (pyTree)- import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P m = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) m = C.initVars(m, 'Density',1.) res = P.integMomentNorm(m, var='Density',center=(5.,5.,0.)); print(res)