Converter: CFD data conversion module
Preamble
This module provides functions for CFD data conversion (both file format and grid topology).
This module is part of Cassiopee, a free open-source pre- and post-processor for CFD simulations.
This module can manipulate two different data structures: the first one is called an array and is very close to a numpy array, the second one is called a pyTree and it implements the CGNS/python standard.
An array is a simple definition of a mesh using classical numpy arrays.
An array can be a structured array defined by a python list [ ‘x,y,z,…’, an, ni, nj, nk ], where ni, nj, nk are the dimension of the grid and an is a (nfld, nixnjxnk) numpy array containing data (coordinates and fields).
An array can also be an unstructured array defined by [ ‘x,y,z,…’, an, cn, ‘ELTTYPE’ ], where cn is a numpy array storing the elements-to-nodes connectivity and an is a numpy array of data. If an stores fields on nodes, ‘ELTTYPE’ can be ‘NODE’, ‘BAR’, ‘TRI’, ‘QUAD’, ‘TETRA’, ‘PYRA’, ‘PENTA’, ‘HEXA’. If an stores field on elements, ‘ELTTYPE’ can be ‘NODE*’, ‘BAR*’, ‘TRI*’, ‘QUAD*’, ‘TETRA*’, ‘PYRA*’, ‘PENTA*’, ‘HEXA*’. Finally, an unstructured array can be of type ‘NGON’, describing meshes made of polyhedral elements. For those arrays, the connectivity cn is made of a faces-to-nodes connectivity (FN) and a elements-to-faces connectivity (EF). cn is then a flat numpy array [nfaces, sizeofFN, ..FN.., nelts, sizeofEF, ..EF..], where nfaces is the number of faces in mesh, nelts the number of elements in mesh. For each face, FN is [number of nodes, ..nodes indices..]. For each element, EF is [number of faces, ..face indices..].
To use the array interface:
import Converter as C
A pyTree is a CGNS/Python tree, that is a mapping of the CGNS standard in Python, using lists and numpy arrays.
Each node of the tree is a Python list defined by [ ‘name’, ar, […], ‘CGNSType_t’ ], where ar is the value stored by this node (ar is a numpy array), and […] designates a list of nodes that are the children of the current node.
Important note: Numpy arrays stored in pyTrees stores only one variable for each node. Numpy arrays for a structured zone can be accessed by ar [i,j,k] and by ar [ind] for a unstructured zone.
To use the pyTree interface:
import Converter.PyTree as C
Name standardisation
Some functions of Converter, Post and other modules perform specific treatments for given variables. For instance, the computeVariables function in the Post module can compute the pressure automatically if density and velocity are defined with their CGNS names. Recognised names are CGNS names, but some alternative names are also recognised. Naming convention is described in the following table.
Description |
CGNS |
Altenative names |
---|---|---|
Coordinate in x direction |
CoordinateX |
x, X |
Coordinate in y direction |
CoordinateY |
y, Y |
Coordinate in z direction |
CoordinateZ |
z, Z |
Density |
Density |
ro |
Momentum in x direction |
MomentumX |
rou, rovx |
Momentum in y direction |
MomentumY |
rov, rovy |
Momentum in z direction |
MomentumZ |
row, rovz |
Density times total energy |
EnergyStagnationDensity |
roE |
Density times turbulence kinetic energy |
TurbulentEnergyKineticDensity |
rok |
Density times dissipation rate of turbulence kinetic energy |
TurbulentDissipationDensity |
roeps |
Static pressure |
Pressure |
p, P |
Dynamic pressure |
PressureDynamic |
|
Enthalpy |
Enthalpy |
|
Entropy |
Entropy |
|
Stagnation pressure |
PressureStagnation |
|
Stagnation temperature |
TemperatureStagnation |
|
x-component of the absolute velocity |
VelocityX |
vx, u |
y-component of the absolute velocity |
VelocityY |
vy, v |
z-component of the absolute velocity |
VelocityZ |
vz, w |
Absolute velocity magnitude |
VelocityMagnitude |
|
Absolute mach number |
Mach |
|
Molecular viscosity |
ViscosityMolecular |
|
Cell nature field (0:blanked, 1:discretised, 2:interpolated) |
cellN, cellnf |
|
Cell nature field (0:blanked, 1:discretised, -Id interp block) |
cellNF, cellnf |
|
Cell nature field (-1:orphan, 0:blanked, 1:discretised, 2: interpolated explicitely, 3: extrapolated, 4: interp implicit) |
status |
List of functions
– Array creation and manipulations
|
Create a structured or unstructured array. |
|
Return the values of an array for a point of index ind or (i,j,k). |
|
Set the values in an array for a point of index ind or (i,j,k). |
|
Add variables to an array. |
|
Copy an array. |
– PyTree creation and manipulations
|
Create a new PyTree. |
|
Add a base name to a pyTree. |
|
Return the nob of a base in t. |
Return the (nob, noz) of a in t. |
|
Break a multi-element zone into single element zones. |
|
|
Gather an additional zone connectivity in z1. |
Delete zones with null number of points or elements. |
|
|
Add single state value or a full reference state. |
|
Add chimera setting as node in base. |
|
Add a BC to a zone node. |
|
Fill empty BCs with given type. |
|
Remove BCs of given type. |
|
Remove BCs of given name. |
|
Remove variables var from t in every BCDataSet. |
|
Extract the grid coordinates of given BC type as zones. |
|
Extract the grid coordinates of given BC name as zones. |
|
Return the range or facelist of unset boundary conditions. |
|
Return geometry, names and types of boundary conditions. |
|
Recover given BCs on a tree. |
|
Extract fields on BCs. |
|
Return the list of zones connected to a through match or nearMatch. |
|
Add a family node to a base node. |
|
Tag a zone node or a BC node with a familyName. |
|
Return all zones that have this familyName. |
|
Return all BC nodes that have this familyName. |
Return the family zone names in a tree or a base. |
|
|
Return the family BC names of a given type. |
Return the dictionary of familyBCs. |
|
|
Return the values for a point of index ind or (i,j,k). |
|
Set the values in an array for a point of index ind or (i,j,k). |
|
Set some field values for given indices. |
|
Add variables to a pyTree. |
Fill FlowSolution nodes with variables, such that all the zones have the same variables. |
|
|
Copy field variables. |
– Array / PyTree common manipulations
Get variable names. |
|
|
Test if varName is present in a. |
Return the total number of points. |
|
Return the total number of cells. |
|
|
Initialize a variable by a value, a function or a formula. |
|
Extract variables from a. |
|
Remove variables. |
|
Convert a array in an unstructured tetra array. |
|
Convert a array in an unstructured hexa array. |
|
Convert a array in a NGON array. |
|
Convert an array in an unstructured node array. |
|
Convert a BAR array without ramifications, closed into an i-array. |
|
Convert a TRI array to a QUAD array. |
|
Convert a HO mesh to a low order mesh. |
|
Convert a LO mesh to a high order mesh. |
|
Conformize topologically a NGON array. |
|
Convert a surface NGon from one type (A: NGON=bars, NFACE=polygon) to another (B: NGON=polygon, NFACE=NULL). |
|
Convert array defined on nodes to array defined on centers. |
|
Convert array defined on centers to array defined on nodes. |
|
Add ghost cells to pyTree. |
|
Remove ghost cells to a pyTree. |
– Array / PyTree analysis
|
Diff arrays defining solutions. |
|
Get the minimum value of variable defined by varName in array. |
|
Get the maximum value of variable defined by varName in array. |
|
Get the mean value of the variable defined by varName in an array. |
|
Get the mean value of the variable defined by varName for a sorted range in an array. |
|
Get the L0 norm of the field defined by varName in the array. |
|
Get the L2 norm of the field defined by varName in the array. |
|
Get the normalisation of the fields defined by vars in the array. |
|
Get the magnitude of the fields defined by vars in the array. |
|
Randomize a field defined by var within a range [a-deltaMin, a+deltaMax]. |
|
Return true if all fields have no NAN or INF values. |
– Array / PyTree input/output
|
Read file and return arrays containing file data. |
|
Write arrays to output file. |
|
Read a file and return a pyTree containing file data. |
|
Write a pyTree to a file. |
– Preconditioning
|
Create a hook for a given function. |
|
Create a hook for a set of zones and for a given function. |
|
Free hook. |
– Geometrical/topological identification
|
Identify nodes of a in KDT. |
|
Identify face centers of a in KDT. |
|
Identify element centers of a in KDT. |
|
Identify points in a hook to mesh points and set the solution if donor and receptor points are distant from tol. |
|
Find in KDT nearest points to nodes of a. |
|
Find in KDT nearest points to face centers of a. |
|
Find in KDT nearest points to element centers of a. |
|
Create the global index field. |
Recover fields of b in a following the global index field. |
– Client/server to exchange arrays/pyTrees
|
Create sockets for communication. |
Listen for sends. |
|
|
Send data to socket. |
– Converter arrays/3D arrays conversion
Convert a standard array to a 3D array. |
|
Convert a 3D array to a standard array. |
Contents
Array creation and manipulations
- Converter.array(vars, ni, nj, nk)
Create a structured array containing variables x,y,z on a nixnjxnk structured grid.
- Parameters:
vars (string) – variables stored in array
ni,nj,nk (int) – grid dimensions
- Return type:
structured array
- Converter.array(vars, np, ne, eltType)
Create a unstructured array containing variables x,y,z on a unstructured grid. The grid has np points, ne elements of type eltType. eltType can be ‘NODE’, ‘BAR’, ‘TRI’, ‘QUAD’, ‘TETRA’, ‘PYRA’, ‘PENTA’, ‘HEXA’, ‘NGON’.
- Parameters:
vars (string) – variables stored in array
np (int) – number of points of grid
ne (int) – number of elements of grid
eltType (string) – type of elements
- Return type:
unstructured array
Example of use:
# - array (array) - import Converter as C # Structured b = C.array('x,y,z', 12, 9, 12); print(b) #>> ['x,y,z', array(...), 12, 9, 12] # Unstructured a = C.array('x,y,z', 12, 9, 'QUAD'); print(a) #>> ['x,y,z', array(...), array(..., dtype=int32), 'QUAD']
- Converter.getValue(array, ind)
Return the list of values defined in array for point of index ind (for both structured and unstructured arrays). For structured arrays, you can specify (i,j,k) instead of ind. For unstructured arrays, the index ind corresponds to the location type of point defining array a: for instance, if array a describes a field at element vertices, ind is a vertex index (ind starts at 0 and (i,j,k) start at 1).
- Parameters:
array (array) – input array
ind (int or tuple of int) – index
- Return type:
list of floats corresponding to field values
Example of use:
# - getValue (array) - import Converter as C import Generator as G # Structured array Ni = 40; Nj = 50; Nk = 20 a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1./(Nk-1)), (Ni,Nj,Nk)) # Get variable values contained in a (x,y,z) in point (10,1,1) print(C.getValue(a, (10,1,1))) #>> [0.23076923076923075, 0.0, 0.0] print(C.getValue(a, 9)) # It is the same point! #>> [0.23076923076923075, 0.0, 0.0] # Unstructured array Ni = 40; Nj = 50; Nk = 20 a = G.cartTetra((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1./(Nk-1)), (Ni,Nj,Nk)) print(C.getValue(a, 9)) #>> [0.23076923076923075, 0.0, 0.0]
- Converter.setValue(array, ind, values)
Set the values of one point of index ind in array. values must be a list corresponding to the variables stored in array.
- Parameters:
array (array) – input array
ind (int or tuple of int) – index
values (list of floats) – values of field to set in this point
Example of use:
# - setValue (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (5,5,1)) # Set point (1,1,1) with value x=0.1, y =0.1, z=1. C.setValue(a, (1,1,1), [0.1,0.1,1.]); print(a) # Same thing with a global index C.setValue(a, 0, [0.1,0.1,1.])
- Converter.addVars(array, add='Density')
Add variable(s) to an array. Variables argument can be a string name (‘ro’) or a list of string names ([‘ro’, ‘rou’]). Variables are set to 0.
- Parameters:
array ([array, list of arrays]) – input array
add (string or list of strings) – variable to add
- Return type:
array with additional variables
- Converter.addVars([a, b, c])
Concatenate array fields with the same dimensions. Variables defined by a list of arrays are put in the same array.
- Parameters:
arrays (list of arrays with same dimension) – input arrays
- Return type:
array with all variables concanated
Example of addVars(array, ‘Density’):
# - addVars (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (10,10,11)) # Add a variable defined by a string a = C.addVars(a, 'ro') a = C.addVars(a, 'cellN') C.convertArrays2File(a, 'out1.plt') # Add variables defined by a list of varNames a = C.addVars(a, ['rou','rov']) C.convertArrays2File(a, 'out2.plt')
Example of addVars([a,b,c]):
# - addVars (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (10,10,11)) b = C.array('cell', a[2], a[3], a[4]) c = C.array('t,u', a[2], a[3], a[4]) f = C.addVars([a, b, c]) C.convertArrays2File(f, 'out.plt')
- Converter.copy(array)
Copy an array (return a new duplicated array).
- Parameters:
array ([array, list of arrays]) – input array
- Return type:
identical to input
Example of use:
# - copy (array) - import Converter as C import Generator as G a = G.cart((0,0,0,), (1,1,1), (10,10,10)) b = C.copy(a) C.convertArrays2File([b], "out.plt")
pyTree creation and manipulation
- Converter.PyTree.newPyTree(args)
Create a new pyTree. You can specify base names, cell dimension in base, and attached zones eventually. See below example for all possibilities of input.
- Parameters:
args ([list of baseNames, list of baseNames and list of zones]) – input
- Return type:
a new pyTree
Example of use:
# - newPyTree (pyTree) - import Converter.PyTree as C import Converter.Internal as Internal # Create a tree with two bases t = C.newPyTree(['Base1','Base2']) # Create a tree with two bases with their dims t = C.newPyTree(['Base1',2,'Base2',3]) # Create a tree with an attached existing Base node base = Internal.newCGNSBase('Base', 3) t = C.newPyTree([base]) # Create a tree with existing zones attached z1 = Internal.newZone('Zone1') z2 = Internal.newZone('Zone2') t1 = C.newPyTree(['Base', z1, z2]) t2 = C.newPyTree(['Base', z1, 'Base2', z2]) t3 = C.newPyTree(['Base', [z1,z2]]) C.convertPyTree2File(t3, 'out.cgns')
- Converter.PyTree.addBase2PyTree(a, baseName, cellDim=3)
Add a base named ‘baseName’ to a pyTree. Third argument specifies the cell dimension (cellDim=3 for volume meshes, cellDim=2 for surface meshes).
Exists also as in place version (_addBase2PyTree) that modifies a and returns None.
- Parameters:
a (CGNS pyTree node) – pyTree
baseName (string) – name of created base
cellDim (int) – cell dimension of zones in base
- Return type:
pyTree with new base added
Example of use:
# - addBase2PyTree (pyTree) - import Converter.PyTree as C import Converter.Internal as Internal t = C.newPyTree(['Base', 3]) # must contain volume zones t = C.addBase2PyTree(t, 'Base2', 2) # must contain surface zones Internal.printTree(t) #>> ['CGNSTree',None,[3 sons],'CGNSTree_t'] #>> |_['CGNSLibraryVersion',array([3.1],dtype='float64'),[0 son],'CGNSLibraryVersion_t'] #>> |_['Base',array(shape=(2,),dtype='int32',order='F'),[0 son],'CGNSBase_t'] #>> |_['Base2',array(shape=(2,),dtype='int32',order='F'),[0 son],'CGNSBase_t']
- Converter.PyTree.getNobOfBase(base, t)
Get the number of a given base in tree base list, such that t[2][nob] = base.
- Parameters:
base (CGNS base node) – a base node
t (pyTree) – tree containing base
- Return type:
the no of base in t children list
Example of use:
# - getNobOfBase (pyTree) - import Converter.PyTree as C import Converter.Internal as Internal t = C.newPyTree(['Base', 'Base2']) b = Internal.getNodeFromName(t, 'Base2') nob = C.getNobOfBase(b, t); print(nob) #>> 2 # This means that t[2][nob] = b
- Converter.PyTree.getNobNozOfZone(zone, t)
Get the number (nob, noz) of a given zone a tree base and zone list , such that t[2][nob][2][noz] = zone.
- Parameters:
zone (CGNS zone node) – a zone node
t (pyTree) – top tree containing zone
- Return type:
the no of base and zone in t children list
Example of use:
# - getNobNozOfZone (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart( (0,0,0), (1,1,1), (10,10,10) ) b = G.cart( (0,0,0), (1,1,1), (10,10,10) ) t = C.newPyTree(['Base', 'Base2']) t[2][1][2] += [a]; t[2][2][2] += [b] (nob, noz) = C.getNobNozOfZone(a, t); print(nob, noz) #>> 1 0 # This means that t[2][nob][2][noz] = a
- Converter.PyTree.breakConnectivity(a)
Break a multi-element zone (unstructured) into single type element zones. If a is a zone node, return a list of single type element zones. If a is a base, a tree or a list of zones return a base, a tree or a list of zones containing single type element zones.
- Parameters:
a ([pyTree, base, zone, list of zones]) – Input data
- Return type:
list of single element zones or identical to input
Example of use:
# - breakConnectivity (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cartHexa((0,0,0), (1,1,1), (10,10,10)) b = G.cartTetra((9,0,0), (1,1,1), (10,10,5)) c = C.mergeConnectivity(a, b, boundary=0) # c is a zone with two connectivities (one HEXA and one TETRA) t = C.newPyTree(['Base',c]) t = C.breakConnectivity(t) # t contains now two zones (one pure HEXA, one pure TETRA) C.convertPyTree2File(t, 'out.cgns') # You can directly break a zone A = C.breakConnectivity(c) # A contains 2 zones C.convertPyTree2File(A, 'out2.cgns')
- Converter.PyTree.mergeConnectivity(a, b, boundary=0)
Merge two zones (unstructured) into a single zone with a multiple connectivity. If boundary=1, b will be a BC connectivity in a (b must be a subzone of a), if boundary=0, b will be a element connectivity.
- Parameters:
a (CGNS Zone node) – first zone
b (CGNS Zone node) – second zone
boundary (0 or 1) – 1 if b is boundary connectivity, 0 if b is an element connectivity
- Return type:
single zone with multiple connectivity
Example of use:
# - mergeConnectivity (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cartHexa((0,0,0), (1,1,1), (10,10,10)) b = G.cartHexa((0,0,0), (1,1,1), (10,10,1)) c = C.mergeConnectivity(a, b, boundary=1) # c contains now a volume HEXA connectivity and a QUAD boundary connectivity. C.convertPyTree2File(c, 'out0.cgns') a = G.cartHexa((0,0,0), (1,1,1), (10,10,10)) b = G.cartTetra((0,0,0), (1,1,1), (10,10,10)) c = C.mergeConnectivity(a, b, boundary=0) # c is now a multiple-element zone containing a volume HEXA connectivity and # a volume TETRA connectivity. C.convertPyTree2File(c, 'out.cgns')
- Converter.PyTree.deleteEmptyZones(a)
Delete structured zones with a null ni, nj or nk, delete unstructured zones with a null number of nodes or elements.
Exists also as in place version (_deleteEmptyZones) that modifies a and returns None.
- Parameters:
a ([pyTree, base, list of zones]) – Input data
- Return type:
Identical to input
Example of use:
# - deleteEmptyZones (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P a = G.cart((0,0,0), (1,1,1), (3,3,3)) b = P.selectCells(a, '{CoordinateX} > 12') c = P.selectCells(a, '{CoordinateX} > 15') t = C.newPyTree(['Base',c,a,b]) C._deleteEmptyZones(t) C.convertPyTree2File(t, 'out.cgns')
- Converter.PyTree.addState(a, state, value)
Add a FlowEquation or a ReferenceState data.
Exists also as in place version (_addState) that modifies a and returns None.
- Parameters:
a ([pyTree, base, zone, list of zones]) – Input data
state (string) – the state to add or modify
value (int, float, string, numpy) – the value of state
- Return type:
Identical to input
- Converter.PyTree.addState(a, adim='adim1', MInf=None, alphaZ=0., alphaY=0., ReInf=1.e8, UInf=None, TInf=None, PInf=None, RoInf=None, LInf=None, Mus=None, MutSMuInf=0.2, TurbLevelInf=1.e-4, EquationDimension=None, GoverningEquations=None)
Add a full reference state built from Adim. See Initiator documentation.
Exists also as in place version (_addState) that modifies a and returns None.
- Parameters:
a ([pyTree, base, zone, list of zones]) – Input data
adim (string) – type of adimensioning
alphaZ... (MInf,) – data for adimensioning
- Return type:
pyTree with new base added
Example of addState(a, state, value):
# - addState (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Converter.Internal as Internal a = G.cylinder((0,0,0), 1., 1.5, 0., 360., 1., (80,30,2)) t = C.newPyTree(['Base',a]) # Specifie des valeurs b = Internal.getNodeFromName1(t, 'Base') C._addState(b, 'EquationDimension', 2) C._addState(b, 'GoverningEquations', 'Euler') C._addState(b, 'Mach', 0.6) C._addState(b, 'Reynolds', 100000)
Example of addState(a, adim, …):
# - addState (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cylinder((0,0,0), 1., 1.5, 0., 360., 1., (80,30,2)) t = C.newPyTree(['Base',a]) # Specifie un etat de reference adimensionne par: # Mach, alpha, Re, MutSMu, TurbLevel (adim1) C._addState(t, adim='adim1', MInf=0.5, alphaZ=0., alphaY=0., ReInf=1.e8, MutSMuInf=0.2, TurbLevelInf=1.e-4) # Specifie un etat de reference adimensionne par: # Mach, alpha, Re, MutSMu, TurbLevel (adim2) C._addState(t, adim='adim2', MInf=0.5, alphaZ=0., alphaY=0., ReInf=1.e8, MutSMuInf=0.2, TurbLevelInf=1.e-4) # Specifie un etat de reference dimensionne par: # U, T, P, L, MutSMu, TurbLevel (dim1) C._addState(t, adim='dim1', UInf=35, TInf=294., PInf=101325, LInf=1., alphaZ=0., alphaY=0., MutSMuInf=0.2, TurbLevelInf=1.e-4) # Specifie un etat de reference dimensionne par: # U, T, Ro, L, MutSMu, TurbLevel (dim2) C._addState(t, adim='dim2', UInf=35, TInf=294., RoInf=1.2, LInf=1., alphaZ=0., alphaY=0., MutSMuInf=0.2, TurbLevelInf=1.e-4) # Specifie un etat de reference dimensionne par: # U, P, Ro, L, MutSMu, TurbLevel (dim3) C._addState(t, adim='dim3', UInf=35, PInf=101325., RoInf=1.2, LInf=1., alphaZ=0., alphaY=0., MutSMuInf=0.2, TurbLevelInf=1.e-4) C.convertPyTree2File(t, 'out.cgns')
- Converter.PyTree.addChimera2Base(base, setting, value)
Add a Chimera setting to a node in base. Settings are added in a .Solver#Chimera user defined node. Chen using chimera, a CGNS base defines one component. They are used to define priority in grid assembly, setting of xray blanking, tolerance in double wall, and the kind of relationship for assembling components. ‘+’ means union, ‘-’ means difference, ‘0’ means inactive, ‘N’: means neutral.
Exists also as in place version (_addChimera2Base) that modifies base and returns None.
- Parameters:
base (CGNS base node) – input base node
setting (string in ['Priority', 'XRayTol', 'XRayDelta', 'DoubleWallTol', '+', '-', '0', 'N']) – type of chimera setting
value (int, float, string) – value for setting
- Return type:
reference copy of input
Example of use:
# - addChimera2Base (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cylinder((0,0,0), 1., 1.5, 0., 360., 1., (80,30,2)) t = C.newPyTree(['Base', a]) t[2][1] = C.addChimera2Base(t[2][1], 'XRayTol', 1.e-6) t[2][1] = C.addChimera2Base(t[2][1], 'XRayDelta', 0.1) t[2][1] = C.addChimera2Base(t[2][1], 'DoubleWallTol', 100.) t[2][1] = C.addChimera2Base(t[2][1], 'Priority', 1) C.convertPyTree2File(t, 'out.cgns')
- Converter.PyTree.addBC2Zone(a, bndName, bndType, wrange=[], zoneDonor=[], rangeDonor=[], trirac=[1, 2, 3], rotationCenter=[], rotationAngle=[], translation=[], faceList=[], elementList=[], elementRange=[], data=None, subzone=None, faceListDonor=None, elementListDonor=None, elementRangeDonor=None, tol=1.e-12, unitAngle=None)
Add a physical boundary condition (BC) or a grid connectivity (GC) to a structured/basic element/NGON zone of a PyTree. Parameter bndName is the name of the BC or GC. Exists also as in place version (_addBC2Zone) modifying zone and returning None.
- Parameters:
a (CGNS zone node) – zone in which the BC/GC is defined
bndName (string) – name of the BC/GC
bndType (string as a CGNS BC type or ['BCMatch','BCNearMatch','BCOverlap','FamilySpecified:'+myFamilyBC]) – type of BC or GC defined either by a CGNS type or by a family of BCs of name myFamilyBC. Joins between stages must be defined by a familyBC prefixed by ‘BCStage’
wrange (a list of integers defining the window [imin,imax,jmin,jmax,kmin,kmax] or a string in ['imin','imax','jmin','jmax,'kmin','kmax']) – for structured grids only. Defines the range of the BC/GC
zoneDonor (zone node for abutting GC and list of [zone nodes, zone names, family of zones prefixed by 'FamilySpecified:]) – donor zone(s)
rangeDonor (a list of integers defining the window [imin,imax,jmin,jmax,kmin,kmax] or a string in ['imin','imax','jmin','jmax,'kmin','kmax'] or 'doubly_defined') – range of donor zone for abutting GC, ‘doubly_defined’ for a doubly defined overlap GC.
trirac (list of three signed integers as a permutation of [1,2,3]) – for an abutting GC, defines the transformation from the window of zone to the donor window
rotationCenter (3-tuple of floats) – for GC with periodicity by rotation, coordinates of the rotation center
rotationAngle (3-tuple of floats) – for GC with periodicity by rotation, angles of rotation in the three directions
unitAngle ('Radian','Degree',None) – defines the units of the rotationAngle (if None, the rotation angle is assumed in degrees)
translation (3-tuple of floats) – for GC with periodicity by translation
faceList (list of integers (>0)) – list of indices of faces for unstructured BE/NGON
elementList (list of integers) – list of indices of elements defining the BC (unstructured basic elements only)
elementRange (list of two integers: [rangeMin, rangeMax]) – range of elements referencing an existing boundary connectivity (unstructured basic elements only)
data (numpy array of floats) – Dirichlet data set in a BCDataSet node with name ‘State’
subzone (pyTree zone) – zone corresponding to the window where the BC is defined (for unstructured zones only)
faceListDonor (list of integers) – list of donor faces (unstructured zones only)
elementListDonor (list of integers) – list of elements defining the donor window (unstructured basic elements only)
elementRangeDonor (list of two integers [rangeMin, rangeMax]) – range of elements defining an existing boundary connectivity corresponding to the donor window (unstructured basic elements only)
tol (float) – tolerance for abutting GC
- Return type:
reference copy of input
Example of use:
# - addBC2Zone (pyTree) - import Converter.PyTree as C import Generator.PyTree as G # - Structured grids - a = G.cylinder((0,0,0), 1., 1.5, 0., 360., 1., (80,30,2)) b = G.cart((-0.1,0.9,0), (0.01,0.01,1.), (20,20,2)) # Physical BC (here BCWall) a = C.addBC2Zone(a, 'wall1', 'BCWall', 'jmin') # Matching BC a = C.addBC2Zone(a, 'match1', 'BCMatch', 'imin', a, 'imax', [1,2,3]) # Matching BC with donor zone name a = C.addBC2Zone(a, 'match1', 'BCMatch', 'imin', a[0], [80,80,1,30,1,2], [1,2,3]) # Overlap BC (with automatic donor zones) a = C.addBC2Zone(a, 'overlap1', 'BCOverlap', [1,80,30,30,1,2]) # Overlap BC (with given donor zones and doubly defined) a = C.addBC2Zone(a, 'overlap2', 'BCOverlap', 'jmin', zoneDonor=[b], rangeDonor='doubly_defined') # BC defined by a family name b = C.addBC2Zone(b, 'wall', 'FamilySpecified:myBCWall', 'imin') # Periodic matching BC b = C.addBC2Zone(b, 'match', 'BCMatch', 'jmin', b, 'jmax', [1,2,3], translation=(0,2,0)) t = C.newPyTree(['Base',a,b]) C.convertPyTree2File(t, 'out.cgns') # - Unstructured grids - a = G.cartTetra((0,0,0), (1,1,1), (10,10,10)) bc = G.cartTetra((0,0,0), (1,1,1), (10,10,1)) a = C.addBC2Zone(a, 'wall1', 'BCWall', subzone=bc) C.convertPyTree2File(a, 'out.cgns')
# - addBC2Zone (pyTree) - import Converter.PyTree as C import Generator.PyTree as G # - NGons - a = G.cartNGon((2,0,0), (0.1,0.1,1), (10,10,2)) C._addBC2Zone(a, 'wall', 'BCWall', faceList=[1,2]) C.convertPyTree2File(a, 'out.cgns')
- Converter.PyTree.fillEmptyBCWith(a, bndName, bndType, dim=3)
Fill empty boundary conditions of grids with the given boundary condition. Parameter dim can be 2 or 3.
Exists also as in place version (_fillEmptyBCWith) that modifies a and returns None.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
bndName (string) – generic name of bnd
bndType (string) – type of bnd
dim (2 or 3) – dimension of problem
- Return type:
reference copy of input
Example of use:
# - fillEmpyBCWith (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0),(1,1,1),(10,10,2)) a = C.addBC2Zone(a, 'overlap', 'BCOverlap', 'imin') a = C.addBC2Zone(a, 'match1', 'BCMatch', 'jmin', a, 'jmax', [1,2,3]) a = C.fillEmptyBCWith(a, 'wall', 'BCWall', dim=2) C.convertPyTree2File(a, 'out.cgns')
- Converter.PyTree.rmBCOfType(a, bndType)
Remove all boundaries of a given type. bndType accepts wildcards. bndType can also be a family BC name. In this case, to remove a family named ‘myFamily’, you must set bndType to ‘FamilySpecified:myFamily’.
Exists also as in place version (_rmBCOfType) that modifies a and returns None.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
bndType (string) – type of bnd to remove (accepts wildcards)
- Return type:
reference copy of input
Example of use:
# - rmBCOfType (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cylinder((0,0,0), 1., 1.5, 0., 360., 1., (80,30,2)) b = G.cart((-0.1,0.9,0), (0.01,0.01,1.), (20,20,2)) a = C.addBC2Zone(a, 'wall1', 'BCWallInviscid', 'jmin') a = C.addBC2Zone(a, 'match1', 'BCMatch', 'imin', a, 'imax', [1,2,3]) a = C.addBC2Zone(a, 'match2', 'BCMatch', 'imax', a, 'imin', [1,2,3]) a = C.addBC2Zone(a, 'overlap1', 'BCOverlap', 'jmax') b = C.addBC2Zone(b, 'wall2', 'BCWall', 'imin') b = C.addBC2Zone(b, 'loin', 'FamilySpecified:LOIN', 'imax') t = C.newPyTree(['Base',a,b]) t[2][1] = C.addFamily2Base(t[2][1], 'LOIN', bndType='BCFarfield') t = C.rmBCOfType(t, 'BCWall*') # rm Wall BCs t = C.rmBCOfType(t, 'BCMatch') # rm match GC t = C.rmBCOfType(t, 'BCFarfield') # rm FarField BCs t = C.rmBCOfName(t, 'FamilySpecified:LOIN') # rm Family C.convertPyTree2File(t, 'out.cgns')
- Converter.PyTree.rmBCOfName(a, bndName)
Remove all boundaries of a given name. bndName accepts wildcards. bndName can also be a family BC name. In this case, to remove a family named ‘myFamily’, you must set bndName to ‘FamilySpecified:myFamily’.
Exists also as in place version (_rmBCOfName) that modifies a and returns None.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
bndName (string) – name of bnd to remove (accepts wildcards)
- Return type:
reference copy of input
Example of use:
# - rmBCOfName (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cylinder((0,0,0), 1., 1.5, 0., 360., 1., (80,30,2)) b = G.cart((-0.1,0.9,0), (0.01,0.01,1.), (20,20,2)) a = C.addBC2Zone(a, 'wall1', 'BCWall', 'jmin') a = C.addBC2Zone(a, 'match1', 'BCMatch', 'imin', a, 'imax', [1,2,3]) a = C.addBC2Zone(a, 'match2', 'BCMatch', 'imax', a, 'imin', [1,2,3]) a = C.addBC2Zone(a, 'overlap1', 'BCOverlap', 'jmax') b = C.addBC2Zone(b, 'wall2', 'BCWall', 'imin') b = C.addBC2Zone(b, 'loin', 'FamilySpecified:LOIN', 'imax') t = C.newPyTree(['Base',a,b]) t[2][1] = C.addFamily2Base(t[2][1], 'LOIN', bndType='BCFarfield') t = C.rmBCOfName(t, 'wall1') # rm BC named wall1 t = C.rmBCOfName(t, 'match*') # rm all BC starting with match t = C.rmBCOfName(t, 'FamilySpecified:LOIN') # rm all BCs of family LOIN C.convertPyTree2File(t, 'out.cgns')
- Converter.PyTree.rmBCDataVars(a, varName)
Remove variables given by varName in all BCDataSet. a can be tree, zone or list of zones. varName can be single variable name or a list of variable name.
Exists also as in place version (_rmBCDataVars) that modifies a and returns None.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
varName (string or list of strings) – name of variable (or list of name) to remove
- Return type:
reference copy of input
Example of use:
# - rmBCDataVars (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0),(1,1,1),(10,10,10)) a = C.addBC2Zone(a, 'wall1', 'BCWall', 'jmin') a = C.addBC2Zone(a, 'wall2', 'BCWall', 'jmax') C._initBCDataSet(a,'{var1}=1.') C._initBCDataSet(a,'{var2}=2.') C._initBCDataSet(a,'{var3}=3.') a = C.rmBCDataVars(a,'var1') a = C.rmBCDataVars(a,['var2','var3'])
Note
new in version 2.7.
- Converter.PyTree.extractBCOfType(a, bndType, topTree=None, reorder=True, shift=0)
Extract all boundaries of a given type. Returns a list of zones. Each zone corresponds to one boundary condition. If a BCDataSet exists in boundary condition, it is contained as zones flow solution. If flow solution exists and no BCDataSet exists, the flow solution is extracted. bndType accepts wildcards. bndType can also be a family BC name. Int this case, to extract the BCs of ‘myFamily’, you must set bntType to ‘FamilySpecified:myFamily’.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
bndType (string) – type of BC to extract (accepts wildcards)
topTree (pyTree) – top tree if a is a zone and contains families of BCs.
reorder (Boolean) – if True, extracted zones are reordered such that normals are oriented towards the interior of a.
shift (int) – if not 0, shift boundary of shift cells (only structured grids)
- Return type:
list of zones
Example of use:
# - extractBCOfType (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cylinder((0,0,0), 1., 1.5, 360., 0., 1., (100,30,10)) a = C.addBC2Zone(a, 'wall1', 'BCWall', 'jmin') Z = C.extractBCOfType(a, 'BCWall') C.convertPyTree2File(Z, 'out.cgns')
- Converter.PyTree.extractBCOfName(a, bndName, reorder=True, shift=0)
Extract all boundaries of a given name. Returns a list of zones. Each zone corresponds to one boundary condition. If a BCDataSet exists in boundary condition, it is contained as zones flow solution. If flow solution exists and no BCDataSet exists, the flow solution is extracted. bndName accepts wildcards. bndName can also be a family BC name. Int this case, to extract the BCs of ‘myFamily’, you must set bntName to ‘FamilySpecified:myFamily’.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
bndName (string) – name of BC to extract (accepts wildcards)
reorder (Boolean) – if True, extracted zones are reordered such that normals are oriented towards the interior of a.
shift (int) – if not 0, shift boundary of shift cells (only structured grids)
- Return type:
list of zones
Example of use:
# - extractBCOfName (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cylinder((0,0,0), 1., 1.5, 360., 0., 1., (100,30,10)) a = C.addBC2Zone(a, 'wall1', 'BCWall', 'jmin') a = C.addBC2Zone(a, 'walla', 'FamilySpecified:CARTER', 'imin') t = C.newPyTree(['Base',3,'Skin',2]); t[2][1][2] += [a] t[2][1] = C.addFamily2Base(t[2][1], 'CARTER', bndType='BCWall') Z1 = C.extractBCOfName(a, 'wall*') Z2 = C.extractBCOfName(a, 'FamilySpecified:CARTER') C.convertPyTree2File(Z1+Z2, 'out.cgns')
- Converter.PyTree.getEmptyBC(a, dim=3, splitFactor=180.)
For each zone, undefined boundary conditions is a list of ranges [imin,imax,jmin,jmax,kmin,kmax] of undefined boundaries for structured zones or is a list of face indices for unstructured zones. The complete return is a list of of undefined boundary condition for each zone.
Lists can be empty ([[],…,[]]) if all the boundary conditions of a zone have been defined. Parameter dim can be 2 or 3. For unstructured grids, undefined boundaries can be split if the angle between neighbouring elements exceeds splitFactor in degrees (default no split).
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
dim (2 or 3) – dimension of problem
- Return type:
list of ranges or face indices
Example of use:
# - getEmptyBC (pyTree) - import Generator.PyTree as G import Converter.PyTree as C a1 = G.cart((0.,0.,0.), (0.1, 0.1, 0.1), (11, 21, 2)); a1[0] = 'cart1' a1 = C.addBC2Zone(a1, 'wall1', 'BCWall', 'imin') a2 = G.cart((1., 0.2, 0.), (0.1, 0.1, 0.1), (11, 21, 2)); a2[0] = 'cart2' a2 = C.addBC2Zone(a2, 'wall1', 'BCWall', 'imax') t = C.newPyTree(['Base',a1,a2]) # Returns undefined windows (as range list since structured) wins = C.getEmptyBC(t,2); print(wins) #>> [[ [[11, 11, 1, 21, 1, 2], ..., [1, 11, 21, 21, 1, 2]], [[1, 1, 1, 21, 1, 2], ..., [1, 11, 21, 21, 1, 2]] ]] # Returns undefined windows (as face indices list) t = C.convertArray2NGon(t) faceList = C.getEmptyBC(t,2); print(faceList) #>> [[ [array([ 11, 230, ...], dtype=int32)], [array([ 1, 221, 222, 632, ...], dtype=int32)] ]] C.convertPyTree2File(t, 'out.cgns')
- Converter.PyTree.getBCs(t, reorder=True)
Return the BCs with their complete geometries, names and types.
- Parameters:
t ([pyTree, base, zone, list of zones]) – input data
reorder (Boolean) – if True, extracted BCs are reordered such that normals are oriented towards the interior of a.
- Return type:
tuple (BCs, BCNames, BCTypes) where BCs is a list of BC nodes, BCNames a list of BC names and BCTypes a list of BC types.
Example of use:
# - getBCs (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0),(1,1,1),(10,10,2)) a = C.addBC2Zone(a, 'overlap', 'BCOverlap', 'imin') a = C.addBC2Zone(a, 'match1', 'BCMatch', 'jmin', a, 'jmax', [1,2,3]) a = C.fillEmptyBCWith(a, 'wall', 'BCWall', dim=2) (BCs,BCNames,BCTypes) = C.getBCs(a) print (BCs,BCNames,BCTypes)
- Converter.PyTree.recoverBCs(t, (BCs, BCNames, BCTypes), tol=1.e-11)
Recover given BCs onto a NGon tree. BCs are given by a tuple of geometries, names and types has obtained by getBCs. Exists also as in place version (_recoverBCs) that modifies t and returns None.
- Parameters:
t ([pyTree, base, zone, list of zones]) – input NGon data
BCTypes) ((BCs, BCNames,) – tuple (BCs, BCNames, BCTypes) where BCs is a list of BC nodes, BCNames a list of BC names and BCTypes a list of BC types.
- Return type:
reference copy of t
Example of use:
# - recoverBCs (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0),(1,1,1),(10,10,2)) a = C.addBC2Zone(a, 'overlap', 'BCOverlap', 'imin') a = C.addBC2Zone(a, 'match1', 'BCMatch', 'jmin', a, 'jmax', [1,2,3]) a = C.fillEmptyBCWith(a, 'wall', 'BCWall', dim=2) (BCs,BCNames,BCTypes) = C.getBCs(a) b = C.convertArray2NGon(a) C._recoverBCs(b,(BCs,BCNames,BCTypes)) C.convertPyTree2File(b,'out.cgns')
- Converter.PyTree.extractBCFields(a, varList=None)
Extract fields defined at BCs of a zone z. If no BCDataSet is defined then a 0th-order extrapolation from interior cells is done. If a BCDataSet is defined, it has priority on the extrapolation. List of variables can be specified by the user. If not, the variables that are extracted are those defined in the FlowSolution node located at cell centers. Currently, this function works for structured and NGON zones. It returns the list of variables that could have been extracted and the indices of the face centers of the corresponding BCs.
- Parameters:
a (zone) – input data
varList (list of strings defining variables or None) – list of variables to be extracted at BCs
- Return type:
tuple (varList, fields, indicesBC) where varList is a list of extracted variables, fields the list of numpy arrays defining extracted fields at BCs, indicesBC the numpy array of indices of BC faces.
Example of use:
# - extractBCFields (pyTree) - import Converter.Internal as Internal import Converter.PyTree as C import Generator.PyTree as G ni = 10; nj = 10; nk = 10 nfaces = (nj-1)*(nk-1) a = G.cart((0,0,0), (1,1,1), (ni,nj,nk)) C._addBC2Zone(a, 'wall', 'BCWall', 'imin') C._initVars(a,'centers:VelocityX={centers:CoordinateX}') C._initVars(a,'centers:Density=1.05') b = Internal.getNodeFromName2(a, 'wall') d = Internal.newBCDataSet(name='BCDataSet', value='UserDefined', gridLocation='FaceCenter', parent=b) d1 = Internal.newBCData('BCNeumann', parent=d) d = Internal.newDataArray('Density', value=nfaces*[1.], parent=d1) d = Internal.newDataArray('MomentumX', value=nfaces*[0.3], parent=d1) # Get data array node list #varList=['Density','MomentumX'] varList=None res = C.extractBCFields(a,varList=varList) print('variables = ', res[0]) print('fields = ', res[1]) print('indices = ', res[2])
- Converter.PyTree.getConnectedZones(a, topTree, type='all')
Get zones connected to a given zone a by ‘BCMatch’ or ‘BCNearMatch’ or ‘all’ (defined in zone GridConnectivity).
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
topTree (pyTree) – the pyTree containing a
- Return type:
list of zones (shared with a)
Example of use:
# - getConnectedZones (pyTree) - import Generator.PyTree as G import Converter.PyTree as C import Connector.PyTree as X a = G.cart((0,0,0), (1,1,1), (11,11,1)) b = G.cart((10,0,0), (1,1,1), (11,11,1)) t = C.newPyTree(['Base',a,b]) t = X.connectMatch(t, dim=2) zones = C.getConnectedZones(t[2][1][2][1], topTree=t) for z in zones: print(z[0]) #>> cart
- Converter.PyTree.addFamily2Base(a, familyName, bndType=None)
Add a family node to a base node of a tree. The family can designates a set of zone (family of zones) or a set of boundary conditions (family of BCs). If the family designates a family BC, then bndType must be defined with a CGNS BC type or with ‘UserDefined’. This family name can then be referenced in zones or in boundary conditions.
Exists also as in place version (_addFamily2Base) that modifies a and returns None.
- Parameters:
a ([pyTree, base]) – input data
- Return type:
reference copy of a
Example of use:
# - addFamily2Base (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cylinder((0,0,0), 1., 1.5, 0, 360, 1, (50,20,20)) t = C.newPyTree(['Base', a]) # Add family name referencing a BCWall BC type C._addFamily2Base(t[2][1], 'flap', 'BCWall') # Add just a family name C._addFamily2Base(t[2][1], 'component1') C.convertPyTree2File(t, 'out.cgns')
- Converter.PyTree.tagWithFamily(a, familyName, add=False)
Tag zones or a BC nodes with a family name. If a is a pyTree, base, zone or list of zones, family is supposed to be a family of zones. If a is a BC node or a list of BC nodes, family is supposed to be a familyBC. If add=True and a family already exists, the family is added as a AdditionalFamilyName.
Exists also as in place version (_tagWithFamily) that modifies a and returns None.
- Parameters:
a ([pyTree, base, zone, list of zones, BC node, list of BC nodes]) – input data
add (True or False) – if True, family is added otherwise it replaces an eventual existing family
- Return type:
reference copy of a
Example of use:
# - tagWithFamily (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cylinder((0,0,0), 1., 1.5, 0., 360., 1., (80,30,2)) b = G.cart((-0.1,0.9,0), (0.01,0.01,1.), (20,20,2)) C._tagWithFamily(a, 'CYLINDER') C._tagWithFamily(b, 'CART') t = C.newPyTree(['Base',a,b]) C._addFamily2Base(t[2][1], 'CYLINDER') C._addFamily2Base(t[2][1], 'CART') C.convertPyTree2File(t, 'out.cgns')
- Converter.PyTree.getFamilyZones(a, familyName)
Get all zones of given family (family of zones).
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
- Return type:
list of zones (shared with a)
Example of use:
# - getFamilyZones (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cylinder((0,0,0), 1., 1.5, 0., 360., 1., (80,30,2)) b = G.cylinder((3,0,0), 1., 1.5, 0., 360., 1., (80,30,2)) c = G.cart((-0.1,0.9,0), (0.01,0.01,1.), (20,20,2)) C._tagWithFamily(a, 'CYLINDER') C._tagWithFamily(b, 'CYLINDER') C._tagWithFamily(c, 'CART') t = C.newPyTree(['Base',a,b,c]) C._addFamily2Base(t[2][1], 'CYLINDER') C._addFamily2Base(t[2][1], 'CART') zones = C.getFamilyZones(t, 'CYLINDER') for z in zones: print(z[0]) #>> cylinder cylinder.0
- Converter.PyTree.getFamilyBCs(a, familyName)
Get all BC nodes corresponding to a given familyName (family of BCs).
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
- Return type:
list of BC nodes (shared with a)
Example of use:
# - getFamilyBCs (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Converter.Internal as Internal a = G.cart((0.,0.,0), (0.01,0.01,1.), (20,20,2)) b = G.cart((1.,0.,0), (0.01,0.01,1.), (20,20,2)) a = C.addBC2Zone(a, 'walla', 'FamilySpecified:CARTER', 'imin') b = C.addBC2Zone(b, 'wallb', 'FamilySpecified:CARTER', 'jmin') t = C.newPyTree(['Base',a,b]) C._addFamily2Base(t[2][1], 'CARTER', bndType='BCWall') B1 = C.getFamilyBCs(t, 'CARTER'); Internal.printTree(B1) #>> ['walla',array('FamilySpecified',dtype='|S1'),[2 sons],'BC_t'] #>> |_['PointRange',array(shape=(3, 2),dtype='int32',order='F'),[0 son],'IndexRange_t'] #>> |_['FamilyName',array('CARTER',dtype='|S1'),[0 son],'FamilyName_t'] #>> ['wallb',array('FamilySpecified',dtype='|S1'),[2 sons],'BC_t'] #>> |_['PointRange',array(shape=(3, 2),dtype='int32',order='F'),[0 son],'IndexRange_t'] #>> |_['FamilyName',array('CARTER',dtype='|S1'),[0 son],'FamilyName_t']
- Converter.PyTree.getFamilyZoneNames(a)
Return all family zone names defined in a.
- Parameters:
a ([pyTree, base]) – input data
- Return type:
list of familyZone names
Example of use:
# - getFamilyZoneNames (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0.,0.,0), (0.01,0.01,1.), (20,20,2)) b = G.cart((1.,0.,0), (0.01,0.01,1.), (20,20,2)) C._tagWithFamily(a, 'CARTER') C._tagWithFamily(b, 'CARTER') t = C.newPyTree(['Base',a,b]) C._addFamily2Base(t[2][1], 'CARTER') # Toutes les family zone names de l'arbre names = C.getFamilyZoneNames(t); print(names) #>> ['CARTER']
- Converter.PyTree.getFamilyBCNamesOfType(a, bndType=None)
Return all family BC names of a given type. If type is None, return all family BC names.
- Parameters:
a ([pyTree, base]) – input data
- Return type:
list of familyBC names
Example of use:
# - getFamilyBCNamesOfType (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0.,0.,0), (0.01,0.01,1.), (20,20,2)) b = G.cart((1.,0.,0), (0.01,0.01,1.), (20,20,2)) a = C.addBC2Zone(a, 'walla', 'FamilySpecified:CARTER', 'imin') b = C.addBC2Zone(b, 'wallb', 'FamilySpecified:CARTER', 'jmin') t = C.newPyTree(['Base',a,b]) C._addFamily2Base(t[2][1], 'CARTER', bndType='BCWall') # Toutes les familyBCs de type BCwall names = C.getFamilyBCNamesOfType(t, 'BCWall'); print(names) #>> ['CARTER'] # Toutes les familyBCs de l'arbre names = C.getFamilyBCNamesOfType(t); print(names) #>> ['CARTER']
- Converter.PyTree.getFamilyBCNamesDict(a)
Return all family BC names contained in a as a dictionary ‘familyName’, ‘BCType’. The dictionary is dict[‘familyName’] = ‘BCType’.
- Parameters:
a ([pyTree, base]) – input data
- Return type:
dictionary of familyBC names with their type
Example of use:
# - getFamilyBCNamesDict (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0.,0.,0), (0.01,0.01,1.), (20,20,2)) b = G.cart((1.,0.,0), (0.01,0.01,1.), (20,20,2)) a = C.addBC2Zone(a, 'walla', 'FamilySpecified:CARTER', 'imin') b = C.addBC2Zone(b, 'wallb', 'FamilySpecified:CARTER', 'jmin') t = C.newPyTree(['Base',a,b]) C._addFamily2Base(t[2][1], 'CARTER', bndType='BCWall') # Toutes les familyBCs dict = C.getFamilyBCNamesDict(t); print(dict) #>> {'CARTER': 'BCWall'}
- Converter.PyTree.getValue(a, var, ind)
Return the field value(s) defined in a zone a for point of index ind (for both structured and unstructured zones). For structured zones, you can specify (i,j,k) instead of ind. For unstructured zones, the index ind corresponds to the location type of point defining zone a. For instance, if a describes a field at element vertices, ind is a vertex index. var is the name of the field variable or a list of field variables or a container name. Variable name can be preceded with ‘centers:’ or ‘nodes:’. This routine is slow and must not be used to access all points of a zone. In this case, it is better to access the field numpy with Internal.getNodeFromName for example.
- Parameters:
a (zone) – input zone
var (string) – field name
ind (int or tuple of ints) – index
- Return type:
float or list of floats
Example of use:
# - getValue (pyTree) - import Converter.PyTree as C import Generator.PyTree as G # Structured array Ni = 40; Nj = 50; Nk = 20 a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1./(Nk-1)), (Ni,Nj,Nk)) # Get variable values contained in a in point (10,1,1) print(C.getValue( a, 'CoordinateX', (10,1,1) )) #>> 0.230769230769 print(C.getValue( a, 'CoordinateX', 9 )) # It's the same point #>> 0.230769230769 print(C.getValue( a, 'nodes:CoordinateX', 9 )) # It's the same point #>> 0.230769230769 print(C.getValue( a, 'GridCoordinates', 9 )) # return [x,y,z] #>> [0.23076923076923075, 0.0, 0.0] print(C.getValue( a, ['CoordinateX', 'CoordinateY'], 9 )) # return [x,y] #>> [0.23076923076923075, 0.0] # Unstructured array Ni = 40; Nj = 50; Nk = 20 a = G.cartTetra((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1./(Nk-1)), (Ni,Nj,Nk)) print(C.getValue( a, 'CoordinateX', 9 )) #>> 0.230769230769
- Converter.PyTree.setValue(a, var, ind, value)
Set the values of one point of index ind in a zone a. var is the name of the field variable or a container name. Variable name can be preceded with ‘centers:’ or ‘nodes:’. value can be a float or a list of floats corresponding to the values of the variables to be modified. This routine is slow and must not be used to access all points of a zone. In this case, it is better to use setPartialFields.
- Parameters:
a (zone) – input zone
var (string) – field name
ind (int or tuple of ints) – index
Example of use:
# - setValue (pyTree) - import Converter.PyTree as C import Generator.PyTree as G # Structured array Ni = 40; Nj = 50; Nk = 20 a = G.cart((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1./(Nk-1)), (Ni,Nj,Nk)) C.setValue(a, 'CoordinateX', (10,1,1), 0.25) C.setValue(a, 'GridCoordinates', (11,1,1), [0.3,0.2,0.1]); print(a) # Unstructured array Ni = 40; Nj = 50; Nk = 20 a = G.cartTetra((0,0,0), (1./(Ni-1), 0.5/(Nj-1),1./(Nk-1)), (Ni,Nj,Nk)) C.setValue(a, 'CoordinateX', 9, 0.1 ); print(a)
- Converter.PyTree.setPartialFields(a, F, I, loc='nodes', startFrom=0)
Set the values for a given list of indices. Field values are given as a list of arrays in F (one array for each zone), indices are given as a list of numpys in I (one numpy for each zone), loc can be ‘nodes’ or ‘centers’.
Exists also as in place version (_setPartialFields) that modifies a and returns None.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
F (list of arrays) – list of arrays of fields values
I (list of numpys) – list of indices
loc ('centers' or 'nodes') – location of fields in zone
startFrom (integer) – starting indice of I (e.g. 0 or 1)
- Return type:
reference copy of input
Example of use:
# - setPartialFields (pyTree) - import Generator.PyTree as G import Converter.PyTree as C import Converter import numpy a = G.cart((0,0,0), (1,1,1), (10,10,10)) a = C.initVars(a, 'F', 2.) f1 = Converter.array('F', 5,1,1) f1[1][:] = 1. inds = numpy.array([0,1,2], dtype=numpy.int32) b = C.setPartialFields(a, [f1], [inds], loc='nodes') t = C.newPyTree(['Base',b]) C.convertPyTree2File(t, 'out.cgns')
- Converter.PyTree.addVars(a, vars)
Add given variables. Variables are added to the flow container as described by Internal.__FlowSolutionNodes__ or Internal.__FlowSolutionCenters__. Prefix the variable names with ‘centers:’ or ‘nodes:’ to specify variable location. Exists also as in place version (_addVars) that modifies a and returns None.
- Parameters:
a ([pyTree, base, list of zones]) – input data
vars (list of strings) – list of variable names to add.
- Return type:
reference copy of intput
Example of use:
# - addVars (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (10,10,11)) a = C.addVars(a, 'rou') a = C.addVars(a, 'centers:cellN') a = C.addVars(a, ['Density', 'Hx', 'centers:Hy']) t = C.newPyTree(['Base',a]) C.convertPyTree2File(t, 'out.cgns')
- Converter.PyTree.fillMissingVariables(a)
Add missing variables and reorder variables for all zones, such that all zones have the same variables at the end.
Exists also as in place version (_fillMissingVariables) that modifies a and returns None.
- Parameters:
a ([pyTree, base, list of zones]) – input data
- Return type:
reference copy of intput
Example of use:
# - fillMissingVariables (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (10,10,11)); a[0] = 'cart1' b = G.cart((1,0,0), (2,1,1), (10,10,11)); b[0] = 'cart2' C._addVars(a, 'rou'); C._addVars(a, 'rov') C._addVars(a, 'centers:cellN') C._addVars(a, ['Density', 'Hx', 'centers:Hy']) t = C.newPyTree(['Base',a,b]) t = C.fillMissingVariables(t) C.convertPyTree2File(t, 'out.cgns')
- Converter.PyTree.cpVars(a1, var1, a2, var2)
Copy a variable from zone a1, with name var1, to zone a2, with name var2. The var location must be coherent. a1 and a2 can be identical.
Exists also as in place version (_cpVars) that modifies a2 and returns None.
- Parameters:
a1 (zone node) – input zone 1
var1 (string) – variable name (can be preceded of ‘centers:’ or ‘nodes:’)
a2 (zone node) – receiver zone 2
var2 (string) – variable name (can be preceded of ‘centers:’ or ‘nodes:’)
- Return type:
reference copy of a2
Example of use:
# - cpVars (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0),(1,1,1),(10,10,10)); a[0] = 'cart1' b = G.cart((0,0,0),(1,1,1),(10,10,10)); b[0] = 'cart2' C._initVars(a, 'Density', 2.) C._initVars(b, 'centers:H', 4.) a = C.cpVars(a, 'Density', a, 'G') # copy in a C._cpVars(a, 'Density', b, 'Density') # copy from a to b a = C.cpVars(b, 'centers:H', a, 'centers:H') # copy from b to a t = C.newPyTree(['Base',a,b]) C.convertPyTree2File(t, 'out.cgns')
Array / PyTree common manipulations
- Converter.getVarNames(a, excludeXYZ=False, loc='both')
Return the list of variable names contained in a. Localization of variables can be specified (‘nodes’, ‘centers’, ‘both’). Coordinates can be excluded. Only containers defined in Internal.__GridCoordinates__, Internal.__FlowSolutionNodes__ and Internal.__FlowSolutionCenters__ are scanned.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
exludeXYZ – if True, Coordinates are not scanned
loc ('nodes', 'centers', 'both') – variable localisations
- Return type:
list of field names (one for each zone of a)
Example of use:
# - getVarNames (array) - import Converter as C a = C.array('x,y,z,ro', 12, 9, 12) print(C.getVarNames(a)) #>> ['x', 'y', 'z', 'ro']
# - getVarNames (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0),(1,1,1),(10,10,10)) C._addVars(a, ['Density', 'centers:cellN']) # one zone print(C.getVarNames(a, loc='nodes')) #>> [['CoordinateX', 'CoordinateY', 'CoordinateZ', 'Density']] print(C.getVarNames(a, loc='centers')) #>> [['CoordinateX', 'CoordinateY', 'CoordinateZ', 'centers:cellN']] print(C.getVarNames(a, excludeXYZ=True, loc='both')) #>> [['Density', 'centers:cellN']]
- Converter.isNamePresent(a, varName)
Return -1 if a doesn’t contain field varName, 0 if at least one zone in a contains varName, 1 if all zones in a contain varName.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
varName (string) – variable name (can be preceded by ‘nodes:’ or ‘centers:’)
- Return type:
-1, 0, 1
Example of use:
# - isNamePresent (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (50,50,50)) C._initVars(a, 'F', 1.) b = G.cart((0,0,0), (1,1,1), (50,50,50)) C._initVars(b, 'centers:G', 2.) print(C.getVarNames([a, b])) #>> [['x', 'y', 'z', 'F'], ['x', 'y', 'z', 'G']] print(C.isNamePresent(a, 'F')) #>> 1 print(C.isNamePresent([a, b], 'F')) #>> 0 print(C.isNamePresent([a, b], 'K')) #>> -1
# - isNamePresent (PyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (50,50,50)) C._initVars(a, 'F', 1.) C._initVars(a, 'centers:G', 0.) b = G.cart((0,0,0), (1,1,1), (50,50,50)) C._initVars(b, 'F', 2.) C._initVars(b, 'centers:H', 3.) t = C.newPyTree(['Base',a,b]) print(C.getVarNames([a, b])) #>> [['CoordinateX', 'CoordinateY', 'CoordinateZ', 'F', 'centers:G'], ['CoordinateX', 'CoordinateY', 'CoordinateZ', 'F', 'centers:H']] print(C.isNamePresent(a, 'F')) #>> 1 print(C.isNamePresent(a, 'centers:F')) #>> -1 print(C.isNamePresent([a, b], 'F')) #>> 1 print(C.isNamePresent([a, b], 'centers:G')) #>> 0
- Converter.getNPts(a)
Return the total number of points in a.
Exists also as parallel distributed version (C.Mpi.getNPts).
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
- Return type:
int
Example of use:
# - getNPts (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (10,10,11)) npts = C.getNPts(a); print(npts) #>> 1100
# - getNPts (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (10,10,11)) npts = C.getNPts(a); print(npts) #>> 1100
- Converter.getNCells(a)
Return the total number of cells in a.
Exists also as parallel distributed version (C.Mpi.getNCells).
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
- Return type:
int
Example of use:
# - getNCells (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (10,10,11)) ncells = C.getNCells(a); print(ncells) #>> 810
# - getNCells (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (10,10,11)) ncells = C.getNCells(a); print(ncells) #>> 810
- Converter.initVars(a, varNameString, value, isVectorized=False)
Initialize one or several variables as given by varNameString.
For initialisation by a formula string, only one variable can be set at a time.
For initialisation by a function or by a constant, varNameString can be a string or a list of strings.
If the function is vectorized (can be interpreted as a numpy formula), set isVectorized to True.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
varNameString (string or list of strings) – string describing variable or formula
value (float or function and parameters) – value in case of constant init or function.
isVectorized (boolean) – when using functions, indicates that function is vectorized.
- Return type:
identical to input
Example of use:
# - initVars (array) - import Converter as C a = C.array('x,y,z', 10, 10, 10) a = C.initVars(a, 'celln', 2.) a = C.initVars(a, ['F','G'], 0.) C.convertArrays2File(a, 'out.plt')
# - initVars (array) - import Converter as C import Generator as G # Create a function def F(x1, x2): return 3.*x1+2.*x2 def F2(x1, x2): return (3*x1, 4*x2) a = G.cart((0,0,0), (1,1,1), (11,11,1)) a = C.initVars(a, 'F', F, ['x','y']) a = C.initVars(a, 'F', F, ['x','y'], isVectorized=True) a = C.initVars(a, ['F1','F2'], F2, ['x','y'], isVectorized=True) C.convertArrays2File(a, "out.plt")
# - initVars (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (10,10,10)) b = C.initVars(a, '{Density} = 3 * {x} + sin({y})') C.convertArrays2File(b, 'out.plt')
Note
When initializing variables using string formulas, functions correspond to the numpy library.
# - initVars (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (10,10,10)) a = C.initVars(a, 'F', 0.) a = C.initVars(a, 'centers:G', 1.) C.convertPyTree2File(a, 'out.cgns')
# - initVars (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (10,10,10)) # Init from a function def F(x1, x2): return 3.*x1+2.*x2 a = C.initVars(a, 'Density', F, ['CoordinateX','CoordinateY']) a = C.initVars(a, 'centers:F', F, ['centers:CoordinateX','centers:CoordinateY']) C.convertPyTree2File(a, 'out.cgns')
# - initVars (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (10,10,10)) a = C.initVars(a, '{Density} = 3 * {CoordinateX} + sin({CoordinateY})') a = C.initVars(a, '{centers:MomentumX} = 3 * {centers:CoordinateX} + sin({centers:CoordinateY})') C.convertPyTree2File(a, 'out.cgns')
- Converter.extractVars(a, varNames)
Extract variables defined in varNames from a (other variables are removed).
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
varNames (string or list of strings.) – names of variable to extract (can starts with ‘nodes:’ or ‘centers:’’)
- Return type:
Identical to input
Example of use:
# - extractVars (array) - import Generator as G import Converter as C a = G.cart((0,0,0), (1,1,1), (10,10,10)) a = C.initVars(a, 'F', 2.) # Var defined by a string r = C.extractVars(a, 'F') # Vars defined by a list r = C.extractVars(a, ['x','y']) C.convertArrays2File(r, 'out.plt')
# - extractVars (pyTree) - import Generator.PyTree as G import Converter.PyTree as C a = G.cart((0,0,0), (1,1,1), (10,10,10)) a = C.addVars(a, ['F', 'G', 'centers:H']) # Keep only F a = C.extractVars(a, ['F']) C.convertPyTree2File(a, 'out.cgns')
- Converter.rmVars(a, varNames)
Remove variable(s) from a. varNames is a string name or a list of string names.
Exists also as in place version (_rmVars) that modifies a and returns None.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
varNames (string or list of strings.) – names of variable to remove (can starts with ‘nodes:’ or ‘centers:’’)
- Return type:
Identical to input
Example of use:
# - rmVars (array) - import Converter as C import Generator as G a = G.cart((0,0,0),(1,1,1),(10,10,10)) b = C.addVars(a, 'Density') b = C.addVars(a, 'Alpha') b = C.rmVars(b, 'Density') C.convertArrays2File(b, 'out.plt')
# - rmVars (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0),(1,1,1),(10,10,10)) b = C.addVars(a, ['MomentumX','centers:Density']) b = C.rmVars(b, ['MomentumX','centers:Density']) C.convertPyTree2File(b, 'out.cgns')
- Converter.convertArray2Tetra(a, split='simple')
Create tetra unstructured array from an any type of mesh. 2D elements are made triangular, else they are made tetrahedral. If split=’simple’, conversion does not create new points. If split=’withBarycenters’, barycenters of elements and faces are added.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
split (string) – ‘simple’ or ‘withBarycenters’
- Return type:
Identical to input
Example of use:
# - convertArray2Tetra (array) - import Converter as C import Generator as G # 2D: triangles a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) b = C.convertArray2Tetra(a) C.convertArrays2File(b, 'out1.plt') # 3D: tetrahedras a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,10)) b = C.convertArray2Tetra(a) C.convertArrays2File(b, 'out2.plt')
# - convertArray2Tetra (array) - import Converter as C import Generator as G # 2D: quads -> triangles a = G.cartHexa((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) b = C.convertArray2Tetra(a) C.convertArrays2File(b, 'out1.plt') # 3D: hexa -> tetrahedra a = G.cartHexa((0.,0.,0.), (0.1,0.1,0.2), (10,10,10)) b = C.convertArray2Tetra(a) C.convertArrays2File(b, 'out2.plt')
# - convertArray2Tetra (pyTree) - import Converter.PyTree as C import Generator.PyTree as G # 2D : triangles a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) b = C.convertArray2Tetra(a) # 3D : tetrahedras a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,10)) b = C.convertArray2Tetra(a) C.convertPyTree2File([a,b], 'out.cgns')
- Converter.convertArray2Hexa(a)
Create hexa unstructured array from an any type of mesh. 2D elements are made quadrangular, else they are made hexahedral.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
- Return type:
Identical to input
Example of use:
# - convertArray2Hexa (array) - import Converter as C import Generator as G # 2D: quad a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) a = C.convertArray2Hexa(a) # 3D: hexa b = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,10)) b = C.convertArray2Hexa(b) C.convertArrays2File([a,b], 'out.plt')
# - convertArray2Hexa (pyTree) - import Converter.PyTree as C import Generator.PyTree as G # 2D: quad a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) b = C.convertArray2Hexa(a) # 3D: hexa a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,10)) b = C.convertArray2Hexa(a) C.convertPyTree2File([a,b], 'out.cgns')
- Converter.convertArray2NGon(a, recoverBC=1)
Create NGON array from an any type of mesh.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
recoverBC (integer (0 or 1)) – BCs can be recovered (=1) or not(=0) on the NGON a (not valid for arrays).
- Return type:
Identical to input
Example of use:
# - convertArray2NGon(array) - import Converter as C import Generator as G a = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (2,2,1)) b = C.convertArray2NGon(a) C.convertArrays2File(b, 'out.plt')
# - convertArray2NGon(pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (2,2,1)) b = C.convertArray2NGon(a) C.convertPyTree2File(b, 'out.cgns')
- Converter.convertArray2Node(a)
Create NODE array from an any type of mesh. A node array only contains node and no connectivity.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
- Return type:
Identical to input
Example of use:
# - convertArray2Node (array) - import Converter as C import Generator as G a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) b = C.convertArray2Node(a) C.convertArrays2File([b], 'out.plt')
# - convertArray2Node (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) a = C.convertArray2Node(a) C.convertPyTree2File(a, 'out.cgns')
- Converter.convertBAR2Struct(a)
Create a structured 1D array from a BAR array. The BAR array must not contain branches. To split a branched BAR, you may consider T.splitTBranches.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data (BAR)
- Return type:
Identical to input
Example of use:
# - convertBAR2Struct (array) - import Converter as C import Generator as G import Geom as D a = D.circle((0.,0.,0.),1.) a = C.convertArray2Hexa(a); a = G.close(a) b = C.convertBAR2Struct(a) C.convertArrays2File([a,b], 'out.plt')
# - convertBAR2Struct (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Geom.PyTree as D a = D.circle((0.,0.,0.),1.) a = C.convertArray2Hexa(a); a = G.close(a) b = C.convertBAR2Struct(a) C.convertPyTree2File(b,'out.cgns')
- Converter.convertTri2Quad(a, alpha=30.)
Convert a TRI-array to a QUAD-array. Neighbouring cells with an angle lower than alpha can be merged. It returns the QUAD-array b and the rest of not merged cells in a TRI-array c.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data (TRI)
alpha (float) – angle for merging
- Return type:
Identical to input
Example of use:
# - convertTri2Quad (array) - import Converter as C import Generator as G a = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) a, b = C.convertTri2Quad(a, 30.) C.convertArrays2File([a,b], 'out.plt')
# - convertTri2Quad (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cartTetra((0.,0.,0.), (0.1,0.1,0.2), (10,10,1)) a, b = C.convertTri2Quad(a, 30.) C.convertPyTree2File([a,b], 'out.cgns')
- Converter.convertHO2LO(a, mode=0)
Convert a high order element mesh into a low order (linear) mesh. If mode=1, only valid for BAR_3, TRI_6, QUAD_8, QUAD_9, TETRA_10, HEXA_20, HEXA_27, PENTA_18, PYRA_14.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
mode (int) – if 0, coarse extraction, 1, tesselate all points
- Return type:
Identical to input
Example of use:
# - convertHO2LO (array) - import Converter as C import Geom as D a = D.triangle((0,0,0), (1,0,0), (1,1,0)) a = C.convertLO2HO(a, mode=0) a = C.convertHO2LO(a, mode=0) C.convertArrays2File(a, 'out.plt')
# - convertHO2LO (pyTree) - import Converter.PyTree as C import Geom.PyTree as D a = D.triangle((0,0,0), (1,0,0), (1,1,0)) a = C.convertLO2HO(a, mode=0) a = C.convertHO2LO(a, mode=0) C.convertPyTree2File(a, 'out.cgns')
- Converter.convertLO2HO(a, mode=0, order=2)
Convert a low order element mesh into a high order mesh. Points are added linearly on edges or faces. Order 2 can give: BAR_3, TRI_6, QUAD_8, QUAD_9, TETRA_10, HEXA_20, HEXA_27, PENTA_18, PYRA_14. Order 3 can give: BAR_4, TRI_9, …
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
mode (int) – specify the type of generated high order elements
order (int) – specify the order of output elements
- Return type:
Identical to input
Example of use:
# - convertLO2HO (array) - import Converter as C import Geom as D a = D.triangle((0,0,0), (1,0,0), (1,1,0)) a = C.convertLO2HO(a, mode=0) # save to add when ready
# - convertLO2HO (pyTree) - import Converter.PyTree as C import Geom.PyTree as D a = D.triangle((0,0,0), (1,0,0), (1,1,0)) a = C.convertLO2HO(a, mode=0) C.convertPyTree2File(a, 'out.cgns')
- Converter.conformizeNGon(a, tol=1.e-6)
Conformize the cell faces of a NGon, such that a face of a cell corresponds to a unique face of another cell. Typically, a mesh with hanging nodes will be made conform.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data (NGON)
tol (float) – tolerance for face matching
- Return type:
Identical to input
Example of use:
# - conformizeNGon (array) - import Generator as G import Converter as C import Transform as T a = G.cartNGon((0,0,0),(0.1,0.1,1),(11,11,1)) b = G.cartNGon((1.,0,0),(0.1,0.2,1),(11,6,1)) a = G.cartNGon((0,0,0),(1,1,1),(3,3,1)) b = G.cartNGon((2.,0,0),(2,2,1),(2,2,1)) res = T.join(a,b) res2 = C.conformizeNGon(res) C.convertArrays2File(res2, 'out.plt')
# - conformizeNGon (pyTree) - import Generator.PyTree as G import Converter.PyTree as C import Transform.PyTree as T a = G.cartNGon((0,0,0),(0.1,0.1,1),(11,11,1)) b = G.cartNGon((1.,0,0),(0.1,0.2,1),(11,6,1)) res = T.join(a,b) res = C.conformizeNGon(res) C.convertPyTree2File(res, 'out.cgns')
- Converter.convertSurfaceNGon(a, rmEmptyNFaceElements=True)
Convert a surface NGon from one type (A: NGON=bars, NFACE=polygon) to another (B: NGON=polygon, NFACE=NULL).
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data (NGON)
rmEmptyNFaceElements – if True, remove all empty NFaceElements nodes from the zones.
- Return type:
Identical to input
Example of use:
# - convertSurfaceNGon (pyTree) - import Converter.PyTree as C import Converter.Internal as Internal import Generator.PyTree as G # type A : NGON=bars, NFACE=polygon a = G.cartNGon((0,0,0), (1,1,1), (10,10,1), api=3) Internal.printTree(a) # type B : NGON=polygon, NFACE=NULL b = C.convertSurfaceNGon(a) Internal.printTree(b)
- Converter.node2Center(a, var='')
Change data location from nodes to centers. If no variable is specified, the mesh coordinates are also put to centers, resulting in a “all in nodes” mesh. If a variable is specified, only this variable is passed to centers and stored in __FlowSolutionCenters__ container.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
var (string or list of strings or container name) – modified variables
- Return type:
Identical to input
Example of use:
# - node2Center (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (30,40,1)) a = C.initVars(a, '{ro}=2*{x}+{y}') ac = C.node2Center(a) C.convertArrays2File([a,ac], "out.plt")
# - node2Center (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (30,40,1)) a = C.initVars(a, '{Density}=2*{CoordinateX}+{CoordinateY}') # node2Center: passe une variable en centres (dans la meme zone) a = C.node2Center(a, 'Density') C.convertPyTree2File(a, 'out1.cgns') # node2Center: cree une nouvelle zone contenant les centres a = G.cart((0,0,0), (1,1,1), (30,40,1)) a = C.initVars(a, '{Density}=2*{CoordinateX}+{CoordinateY}') b = C.node2Center(a); b[0] = a[0]+'_centers' C.convertPyTree2File([a,b], 'out2.cgns')
- Converter.center2Node(a, var='', cellNType=0)
Change data location from centers to nodes. If no variable is specified, the mesh coordinates are also put to nodes, resulting in a “all in nodes” mesh. If a variable is specified, only this variable is passed to nodes and stored in __FlowSolutionNodes__ container. cellNType indicates the treatement for blanked points when cellN field is present. cellNType=0, means that, if a node receives at least one cellN=0 value from a center, its cellN is set to 0. cellNType=1 means that, only if all values of neighbouring centers are cellN=0, its cellN is set to 0.
Exists also as parallel distributed version (C.Mpi.center2Node).
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
var (string or list of strings or container name) – variables to modify
cellNType (int) – describes the type of treatment for cellN variables.
- Return type:
Identical to input
Example of use:
# - center2Node (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (30,40,1)) a = C.initVars(a, 'ro', 1.) an = C.center2Node(a) C.convertArrays2File(an, "out.plt")
# - center2Node (pyTree) - import Converter.PyTree as C import Generator.PyTree as G # center2Node: create a new zone a = G.cart((0,0,0), (1,1,1), (30,40,1)) C._initVars(a, 'centers:Density', 1.) b = C.center2Node(a); b[0] = a[0]+'_nodes' C.convertPyTree2File(b, 'out0.cgns') # center2Node: modify a variable a = G.cart((0,0,0), (1,1,1), (30,40,1)) C._initVars(a, 'centers:Density', 1.) a = C.center2Node(a, 'centers:Density') # center2Node: modify a container a = C.center2Node(a, 'FlowSolution#Centers') C.convertPyTree2File(a, 'out.cgns')
- Converter.PyTree.addGhostCells(t, b, d, adaptBCs=1, modified=[], fillCorner=1)
Add ghost cells to structured grids. if modified is given, limit add ghost cells to given field containers. Otherwise, ghost cells are added to all containers. If adaptBCs=1, Zone BCs are adapted to fit grid with ghost cells. If fillCorner=1, edges and corners are filled according to the grid connectivity (geometrically, the corners and edges can be wrong). If fillCorner=0, neighbouring vectors are extrapolated to build edge cells, no filling with flow field. Exists also as in place version (_addGhostCells) that modifies a and returns None.
- Parameters:
t (pyTree) – top tree
b ([pyTree, base, zone, list of zones]) – zones to modify
d (int) – number of layers of ghost cells to add
adaptBCs (0 or 1) – if 1, zone BCs are modified to fit ghost grids.
modified (list of container names) – a list of containers to modify. If [], all containers are modified.
fillCorner (0 or 1) – method used to fill corners
- Return type:
Identical to input b
Example of use:
# - addGhostCells (pyTree) - import Generator.PyTree as G import Converter.PyTree as C ni = 11; nj = 11; nk = 8 a = G.cart((0,0,0), (1.,1.,1.), (ni,nj,nk)); a[0]='cart1' b = G.cart((0,0,-3.5), (1.,1.,0.5), (ni,nj,nk)); b[0]='cart2' a = C.addBC2Zone(a,'match','BCMatch','kmin',b[0],[1,ni,1,nj,nk,nk],[1,2,3]) b = C.addBC2Zone(b,'match','BCMatch','kmax',a[0],[1,ni,1,nj,1,1],[1,2,3]) t = C.newPyTree(['Base',a,b]) t = C.addBC2Zone(t, 'wall', 'BCWall', 'imin') t = C.initVars(t, '{F}=3*{CoordinateX}+2*{CoordinateY}') t = C.addGhostCells(t, t, 2, adaptBCs=1) C.convertPyTree2File(t, 'out.cgns')
- Converter.PyTree.rmGhostCells(t, b, d, adaptBCs=1, modified=[])
Remove ghost cells to structured grids. See addGhostCells.
Exists also as in place version (_rmGhostCells) that modifies a and returns None.
- Parameters:
t (pyTree) – top tree
b ([pyTree, base, zone, list of zones]) – zones to modify
d (int) – number of layers of ghost cells to add
adaptBCs (0 or 1) – if 1, zone BCs are modified to fit ghost grids.
modified (list of container names) – a list of containers to modify. If [], all containers are modified.
- Return type:
Identical to input b
Example of use:
# - rmGhostCells (pyTree) - import Generator.PyTree as G import Converter.PyTree as C import Converter.Internal as Internal a = G.cart((1,1,1), (1.,1.,1.), (4,2,3)); a[0]='cart1' b = G.cart((1,1,-3), (1.,1.,0.5), (4,2,9)); b[0]='cart2' a = C.addBC2Zone(a,'match','BCMatch','kmin',b[0],[1,4,1,2,9,9],[1,2,3]) b = C.addBC2Zone(b,'match','BCMatch','kmax',a[0],[1,4,1,2,1,1],[1,2,3]) t = C.newPyTree(['Base',a,b]) t = C.addBC2Zone(t, 'wall', 'BCWall', 'imin') t = C.initVars(t, '{F}=3*{CoordinateX}+2*{CoordinateY}') a = t[2][1][2][0] ag = Internal.addGhostCells(t, a, 2, adaptBCs=1) t[2][1][2][0] = ag ag = C.rmGhostCells(t, ag, 2, adaptBCs=1) t[2][1][2][0] = ag C.convertPyTree2File(t,'out.cgns')
- Converter.PyTree.signNGonFaces(t)
Make signed faces within NGon connectivity.
- Parameters:
t (pyTree) – tree
- Return type:
t with signed faces
Example of use:
import Converter.PyTree as C import Generator.PyTree as G import KCore.test as test a = G.cartNGon((0,0,0), (1,1,1), (3,3,2)) a = C.signNGonFaces(a) C.convertPyTree2File(a, 'case.cgns')
Array / PyTree analysis
- Converter.diffArrays(a, b, removeCoordinates=True)
Given a solution in a and a solution in b, both defined on the same mesh, return the differences.
- Parameters:
a ([list of arrays] or [pyTree, base, zone, list of zones]) – input data 1
b ([list of arrays] or [pyTree, base, zone, list of zones]) – input data 2
removeCoordinates (boolean) – if True, remove original coordinates (pyTree)
- Return type:
Identical to input 1
Example of use:
# - diffArrays (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (11,11,11)) a = C.initVars(a, "F", 1.) a = C.initVars(a, "Q", 1.2) b = G.cart((0,0,0), (1,1,1), (11,11,11)) b = C.initVars(b, "Q", 2.) b = C.initVars(b, "F", 3.) ret = C.diffArrays([a], [b]) C.convertArrays2File(ret, 'out.plt')
# - diffArrays (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (11,11,11)) a1 = C.initVars(a, "F", 1.); a1 = C.initVars(a1, "centers:Q", 1.2) a2 = C.initVars(a, "F", 3.); a2 = C.initVars(a2, "centers:Q", 2.) ret = C.diffArrays(a1, a2) C.convertPyTree2File(ret, 'out.cgns')
- Converter.getMinValue(a, var)
Return the minimum value of field ‘var’ on input.
Exists also as parallel distributed version (C.Mpi.getMinValue).
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
var (string) – variable name
- Return type:
minimum value
Example of use:
# - getMinValue (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1.,1.,1.), (11,1,1)) minval = C.getMinValue(a, 'x'); print(minval) #>> 0.0
# - getMinValue (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1.,1.,1.), (11,1,1)) C._initVars(a, '{centers:F}={centers:CoordinateX}') minval = C.getMinValue(a, 'CoordinateX'); print(minval) #>> 0.0 minval = C.getMinValue(a, 'centers:F'); print(minval) #>> 0.5 minval = C.getMinValue(a, ['CoordinateX', 'CoordinateY']); print(minval) #>> [0.0, 0.0] minval = C.getMinValue(a, 'GridCoordinates'); print(minval) #>> [0.0, 0.0, 0.0]
- Converter.getMaxValue(a, var)
Return the maximum value of field ‘var’ on input.
Exists also as parallel distributed version (C.Mpi.getMaxValue).
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
var (string) – variable name
- Return type:
maximum value
Example of use:
# - getMaxValue (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1.,1.,1.), (11,1,1)) maxval = C.getMaxValue(a, 'x'); print(maxval) #>> 10.0
# - getMaxValue (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1.,1.,1.), (11,2,2)) C._initVars(a, '{centers:F}={centers:CoordinateX}') maxval = C.getMaxValue(a, 'CoordinateX'); print(maxval) #>> 10.0 maxval = C.getMaxValue(a, 'centers:F'); print(maxval) #>> 9.5 maxval = C.getMaxValue(a, ['CoordinateX', 'CoordinateY']); print(maxval) #>> [10.0, 1.0] maxval = C.getMaxValue(a, 'GridCoordinates'); print(maxval) #>> [10.0, 1.0, 1.0]
- Converter.getMeanValue(a, var)
Return the mean value of field ‘var’ on input.
Exists also as parallel distributed version (C.Mpi.getMeanValue).
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
var (string) – variable name
- Return type:
mean value
Example of use:
# - getMeanValue (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1.,1.,1.), (11,1,1)) meanval = C.getMeanValue(a, 'x'); print(meanval) #>> 5.0
# - getMeanValue (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1.,1.,1.), (11,1,1)) meanval = C.getMeanValue(a, 'CoordinateX'); print(meanval) #>> 5.0
- Converter.getMeanRangeValue(a, var, rmin, rmax)
Return the mean value of variable ‘var’ for a given range of value. The field ‘var’ is sorted. Then the mean value of ‘var’ on the given range is returned. For instance, getMeanRangeValue(a, ‘F’, 0., 0.3) return the mean value of F for the 30% lowest values.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
var (string) – variable name
rmin (float) – min of range in [0,1]
rmax – max of range in [0,1]
- Returns:
mean value of var for the min-max %
- Return type:
float
Example of use:
# - getMeanRangeValue (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1.,1.,1.), (11,1,1)) # return the mean of the 30% smallest values meanval = C.getMeanRangeValue(a, 'x', 0., 0.3); print(meanval) # >> 0.75
# - getMeanRangeValue (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1.,1.,1.), (11,1,1)) # get the mean of the 30% smallest values meanval = C.getMeanRangeValue(a, 'CoordinateX', 0., 0.3); print(meanval) #>> 0.75
- Converter.normL0(a, var)
Return the L0 norm of field ‘var’ on input.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
var (string) – variable name
- Return type:
L0 norm
Example of use:
# - normL0 (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (11,11,11)) a = C.initVars(a, 'F', 1.) print('normL0 =', C.normL0(a, 'F')) #>> normL0 = 1.0
# - normL0 (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (11,11,11)) C._initVars(a, 'centers:F', 1.) print('normL0 =', C.normL0(a, 'centers:F')) #>> normL0 = 1.0
- Converter.normL2(a, var)
Return the L2 norm of field ‘var’ on input.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
var (string) – variable name
- Return type:
L2 norm
Example of use:
# - normL2 (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (11,11,11)) a = C.initVars(a, "F", 1.) print('normL2 =', C.normL2(a, "F")) #>> normL2 = 1.0 # cellN variable IS taken into account cellnf = C.array('celln', 11, 11, 11) cellnf = C.initVars(cellnf, "celln", 1.) cellnf[1][0][1] = 0. cellnf[1][0][2] = 0. a = C.addVars([a, cellnf]) print('normL2 =', C.normL2(a, "F")) #>> normL2 = 1.0
# - normL2 (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (11,11,11)) a = C.initVars(a, "F", 1.) print('normL2 =', C.normL2(a, "F")) #>> normL2 = 1.0
- Converter.normalize(a[, 'sx', 'sy', sz'])
Normalize a vector defined by its 3 vector components. The vector component values are modified such that the vector (a.sx,a.sy,a.sz) has a unit norm for each point.
Exists also as in place version (_normalize) that modifies a and returns None.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
sx,sy,sz (list of strings) – names of field used as vector components
- Return type:
Identical to input
Example of use:
# - normalize (array) - import Converter as C import Generator as G import Geom as D a = D.sphere((0,0,0), 1., 50) n = G.getNormalMap(a) n = C.center2Node(n) n[1] = n[1]*10 n = C.normalize(n, ['sx','sy','sz']) a = C.addVars([a, n]) C.convertArrays2File(a, 'out.plt')
# - normalize (pyTree) - import Converter.PyTree as C import Geom.PyTree as D import Generator.PyTree as G a = D.sphere((0,0,0), 1., 50) a = G.getNormalMap(a) a = C.normalize(a, ['centers:sx','centers:sy','centers:sz']) C.convertPyTree2File(a, 'out.cgns')
- Converter.magnitude(a[, 'sx', 'sy', sz'])
Get the magnitude of a vector defined by its 3 vector components for each point. The name of created field is composed from the components names. For instance ‘sx,sy,sz’ will create a ‘sMagnitude’ field.
Exists also as in place version (_magnitude) that modifies a and returns None.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
sx,sy,sz (list of strings) – names of field used as vector components
- Return type:
Identical to input
Example of use:
# - magnitude (array) - import Converter as C import Generator as G import Geom as D a = D.sphere((0,0,0), 1., 50) n = G.getNormalMap(a) n = C.magnitude(n, ['sx','sy','sz']) a = C.addVars([a, n]) C.convertArrays2File(a, 'out.plt')
# - magnitude (pyTree) - import Converter.PyTree as C import Geom.PyTree as D import Generator.PyTree as G a = D.sphere((0,0,0), 1., 50) a = G.getNormalMap(a) a = C.magnitude(a, ['centers:sx','centers:sy','centers:sz']) C.convertPyTree2File(a, 'out.cgns')
- Converter.randomizeVar(a, varName, deltaMin, deltaMax)
Randomize a fied varName. The modified field is bounded by [f-deltaMin,f+deltaMax] where f is the local field value.
Exists also as in place version (_randomizeVar) that modifies a and returns None.
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
varName (string) – field to randomize
deltaMin,deltaMax (floats) – range for random
- Return type:
Identical to input
Example of use:
# - randomizeVar (array) - import Converter as C import Generator as G a = G.cart((0,0,0),(1,1,1),(11,11,1)) a = C.initVars(a, '{F}={x}*{y}') b = C.randomizeVar(a,'F',0.1,0.5) C.convertArrays2File([a,b],"out.plt")
# - randomizeVar (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0),(1,1,1),(11,11,1)) C._randomizeVar(a, 'CoordinateZ', 0.1, 1.) C.convertPyTree2File(a, "out.cgns")
- Converter.isFinite(a, var=None)
Return True if a contains only finite values (no NAN, no INF).
Exists also as parallel distributed version (C.Mpi.isFinite).
- Parameters:
a ([array, list of arrays] or [pyTree, base, zone, list of zones]) – input data
var (string) – variable name (optional)
- Return type:
True or False
Example of use:
# - isFinite (array) - import Generator as G import Converter as C a = G.cart((0,0,0), (1,1,1), (10,10,10)) a = C.initVars(a, 'F', 1.) print(C.isFinite(a)) #>> True print(C.isFinite(a, var='x')) #>> True print(C.isFinite(a, var='F')) #>> True
# - isFinite (pyTree) - import Generator.PyTree as G import Converter.PyTree as C a = G.cart((0,0,0), (1,1,1), (10,10,10)) C._initVars(a, 'F', 1.) print(C.isFinite(a)) #>> True print(C.isFinite(a, var='CoordinateZ')) #>> True print(C.isFinite(a, var='F')) #>> True
Note
new in version 3.2.
Array / PyTree input/output
- Converter.convertFile2Arrays(fileName, format=None, options)
Read a file and return a list of arrays (array interface). For format needing multiple files (for ex: plot3d), multiple files can be specified in file name string as: “file.gbin,file.qbin”. In file format where variables name are undefined, the following ones are adopted: x, y, z, ro, rou, rov, row, roE, cellN. If format is unspecified, the format is guessed from file extension or from file header, if possible. For a list of available format, see FileFormats. Several options are available to specify the discretization of vector elements (for vector formats such as xfig or svg). For a list of available options, see ReadOptions.
- Parameters:
fileName (string) – name of file to read
format (string) – file format (see FileFormats)
options (keywords) – options for vector formats such as svg, xfig (see ReadOptions)
- Returns:
list of arrays
- Return type:
list of Converter arrays
Example of use:
# - convertFile2Arrays (arrays) - import Generator as G import Converter as C # Create and save test meshes cart = G.cart((0,0,0), (0.1, 0.2, 1.), (11, 11, 2)) C.convertArrays2File(cart, 'out.plt') # Read it A = C.convertFile2Arrays('out.plt'); print(A) #>> [['x,y,z', array([[ 0. , 0.1, 0.2, ...]]), 11,11,2]]
- Converter.convertArrays2File(a, fileName, format=None, options)
Write array or list of arrays to a file (array interface). If format is not given, it is guessed from fileName extension. For a list of available formats, see FileFormats. For a list of available options, see WriteOptions.
- Parameters:
a ([array, list of arrays]) – input data
fileName (string) – name of file to read
format (string) – file format (see FileFormats)
options (keywords) – writing options (see WriteOptions)
Example of use:
# - convertArrays2File (array) - import Generator as G import Converter as C # Create a cartesian mesh and save it as binary tecplot file a = G.cart((0,0,0), (0.1, 0.2, 1.), (11, 11, 2)) C.convertArrays2File(a, 'out.plt', 'bin_tp')
- Converter.PyTree.convertFile2PyTree(fileName, format=None, options)
Read a file and return a CGNS pyTree (pyTree interface). If format is not given, it is guessed from file header or extension. For a list of available format, see FileFormats. For a list of available options, see ReadOptions.
- Parameters:
fileName (string) – name of file to read
format (string) – file format (see FileFormats)
options (keywords) – reading options (see ReadOptions)
- Returns:
a pyTree
- Return type:
pyTree
Example of use:
# - convertFile2PyTree (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0.,0.,0.),(0.1,0.1,0.1),(11,11,11)) t = C.newPyTree(['Base',a]) C.convertPyTree2File(t, 'in.cgns') t1 = C.convertFile2PyTree('in.cgns'); print(t1)
- Converter.PyTree.convertPyTree2File(t, fileName, format=None, options)
Write a pyTree to a file (pyTree interface). If format is not given, it is guessed from file name extension. For a list of available format, see FileFormats. For a list of available options, see WriteOptions.
- Parameters:
t ([pyTree, base, zone, list of zones]) – input data
fileName (string) – name of file to read
format (string) – file format (see FileFormats)
options (keywords) – writing options (see WriteOptions)
Example of use:
# - convertPyTree2File (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0.,0.,0.),(0.1,0.1,0.1),(11,11,11)) t = C.newPyTree(['Base', a]) C.convertPyTree2File(t, 'out.cgns') C.convertPyTree2File(a, 'out.plt')
Known formats for read/write functions (array and pyTree interface):
Format
Extension
Description
bin_tp
.plt
binary tecplot file
fmt_tp
.dat, .tp
formatted tecplot file
bin_v3d
.v3d
binary v3d file (ONERA)
fmt_v3d
.fv3d
formatted v3d file (ONERA)
bin_plot3d
.gbin
binary plot 3d file (NASA)
fmt_plot3d
.gfmt
formatted plot 3d file (NASA)
fmt_pov
.pov
formatted povray raytracer file
fmt_mesh
.mesh
formatted mesh file (INRIA)
fmt_gmsh
.msh
formatted GMSH mesh file (UCL)
bin_gmsh
.msh
binary GMSH mesh file (UCL)
fmt_su2
.su2
formatted SU2 file (STANFORD)
fmt_cedre
.d
formatted CEDRE file (ONERA)
bin_stl
.stl
binary STL file
fmt_stl
.fstl
formatted STL file
fmt_selig
.selig
formatted selig file (airfoils)
fmt_obj
.obj
formatted OBJ file (WAVEFRONT)
bin_gltf
.gltf
binary gltf file (KHRONOS, only read)
bin_3ds
.3ds
binary 3DS file (3D STUDIO)
bin_ply
.ply
binary PLY file (STANFORD)
bin_pickle
.ref
binary python pickle file
bin_wav
.wav
binary wav 8 bits sound file
fmt_xfig
.fig
formatted XFIG file
fmt_svg
.svg
formatted SVG file (INKSCAPE)
bin_png
.png
binary PNG file
fmt_iges
.igs
formatted IGES CAD file
fmt_step
.stp
formatted STEP CAD file
Known formats for read/write functions specific to pyTree interface:
Format
Extension
Description
bin_adf
.adf
binary CGNS ADF file
bin_hdf
.cgns .hdf
binary CGNS HDF file
Options for reading:
Option
Description
Format
Default value
nptsCurve
Number of discretization points for curved vector elements
svg, xfig
20
nptsLine
Number of discretization points for lines
svg, xfig
2
density
Number of discretization points per unit length
svg
-1: not used. If > 0, overides npts
skipTypes
list of strings (CGNS types) that stop reading when met
CGNS
None
hausd
chordal error for CAD discretization
igs, stp
(auto)
links
list of list of 4 strings (see after)
HDF
None
Links option:
For hdf format only, when reading, links are always followed but a list of links can be returned. If you specify links=[] to convertFile2PyTree, a list of links is returned. Each link is a list [‘directoryOfPointedFile’, ‘pointedFile’, ‘targetNodePath’, ‘currentNodePath’]. The ‘directoryOfPointedFile’ is the directory where the pointed file must be found, ‘pointedFile’ is the pointed file name, ‘targetNodePath’ is the path of pointed node (in pointed file), ‘currentNodePath’ is the path of node in current file.
Example of use:
# - HDF read/write with links - import Generator.PyTree as G import Converter.PyTree as C import Converter.Filter as Filter a = G.cart((0,0,0),(1,1,1),(50,50,50)) t = C.newPyTree(['Base',a]) C.convertPyTree2File(t, 'coord.hdf') C._initVars(t, 'Density=1.') # Save file with links links=[['.','coord.hdf','/Base/cart/GridCoordinates','/Base/cart/GridCoordinates']] C.convertPyTree2File(t, 'main.hdf', links=links) # full read of main returning links LC=[] t = C.convertFile2PyTree('main.hdf', links=LC); print(LC) #>> [['.', './coord.hdf', '/Base/cart/GridCoordinates', '/Base/cart/GridCoordinates']] # Read links with skeleton LC=[] t = Filter.convertFile2SkeletonTree('main.hdf', links=LC); print(LC) #>> [['.', './coord.hdf', '/Base/cart/GridCoordinates', '/Base/cart/GridCoordinates']]
Options for writing:
Option
Description
Format
Possible values
Default value
isize
Size of integer
v3d, p3d
4,8
4
rsize
Size of real
v3d, p3d
4,8
8
endian
Data endianess
v3d, p3d
‘little’, ‘big’
‘big’
dataFormat
‘printf’ like format for formatted files (%[width][.precision]specifier)
Formatted formats
‘%f’, ‘%.9e’, ‘%16.9e’,…
‘%.9e’
zoneNames
list of zone names (first struct, the unstruct zones)
All
[‘Zone1’,’Zone2’,…]
[]
links
list of list of 4 strings (see after)
HDF
[[‘.’, ‘cart.hdf’, ‘/Base’, ‘/Base’]]
None
Links option:
For hdf format only, when writing, link node path can be specified. These nodes are then not written with data but are written as links to a pointed file. A link is a list [‘directoryOfPointedFile’, ‘pointedFile’, ‘targetNodePath’, ‘currentNodePath’]. The ‘directoryOfPointedFile’ is the directory where the pointed file must be found, ‘pointedFile’ is the pointed file name, ‘targetNodePath’ is the path of pointed node (in pointed file), ‘currentNodePath’ is the path of node in current file. This function doesn’t write the pointed file. You must explicitely write it with another call to convertPyTree2File.
Example of use:
# - HDF write with links - import Generator.PyTree as G import Converter.PyTree as C import Converter.Internal as Internal a = G.cart((0,0,0),(1,1,1),(50,50,50)) C._initVars(a, 'Density=1.') t = C.newPyTree(['Base',a]) # Save file with links links=[['.','coord.hdf','/Base/cart/GridCoordinates','/Base/cart/GridCoordinates']] C.convertPyTree2File(t, 'main.hdf', links=links) # Write pointed file Internal._rmNodeByPath(t, '/Base/cart/FlowSolution') C.convertPyTree2File(t, 'coord.hdf')
Preconditionning (hook)
Preconditionning is used to create pre-computed opaque search structures on zones. These opaque search structures are called hook and are used in the Geometrical identification functions and other functions of Connector and Post.
- Converter.createHook(a, functionName)
Create a hook for use with identification function ‘functionName’. For “extractMesh” and “adt”, input is intended to be a set of zones, otherwise a hook is intended to be created on a single zone.
- Parameters:
a ([array] or [zone]) – input data
functionName (string) – function the hook is made for (see functionName)
- Returns:
hook
- Return type:
opaque structure
Example of use:
# - createHook (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (10,10,10)) hook = C.createHook(a, function='nodes')
# - createHook (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (10,10,10)) hook = C.createHook(a, function='nodes')
Function name
Type of storage
Usage
‘extractMesh’
Bounding boxes of cells stored in an ADT. Valid for structured and TETRA zones.
Post.extractMesh, Post.extractPoint
‘adt’
Bounding boxes of cells stored in an ADT. Valid for structured and TETRA zones.
Connector.setInterpData, Connector.setIBCData
‘nodes’
Mesh nodes stored in a k-d tree
Converter.identifyNodes, Converter.nearestNodes
‘faceCenters’
Mesh face centers stored in a k-d tree
Converter.identifyFaces, Converter.nearestFaces
‘elementCenters’
Mesh element centers stored in a k-d tree
Converter.identifyElements, Converter.nearestElements
- Converter.createGlobalHook(a, functionName, indir=0)
Create a global hook (one single search structure) for a set of zones and for use with identification function ‘functionName’ or identifySolutions. If indir=1, the function also returns an indirection specifying the zone number of each index.
- Parameters:
a ([arrays] or [zones]) – input data
functionName (string) – function the hook is made for (see functionName2)
- Returns:
hook
- Return type:
opaque structure
Example of use:
# - createGlobalHook (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (10,10,10)) b = G.cart((9,0,0), (1,1,1), (10,10,10)) hook = C.createGlobalHook([a,b], function='nodes')
# - createGlobalHook (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (10,10,10)) b = G.cart((9,0,0), (1,1,1), (10,10,10)) hook, indir = C.createGlobalHook([a,b], function='nodes', indir=1)
Function name
Type of storage
Usage
‘nodes’
Mesh nodes stored in a k-d tree
Converter.identifyNodes, Converter.nearestNodes
‘faceCenters’
Mesh face centers stored in a k-d tree
Converter.identifyFaces, Converter.nearestFaces
‘elementCenters’
Mesh element centers stored in a k-d tree
Converter.identifyElements, Converter.nearestElements
- Converter.freeHook(hook)
Free a hook created with createHook.
- Parameters:
hook (opaque search structure as created by createHook) – hook
Example of use:
# - freeHook (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (10,10,10)) hook = C.createHook([a], function='extractMesh') C.freeHook(hook)
# - freeHook (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (10,10,10)) hook = C.createHook([a], function='extractMesh') C.freeHook(hook)
Geometrical identification
- Converter.identifyNodes(hook, a, tol=1.e-11)
Identify nodes of a with nodes stored in hook. Return the indices of hook corresponding to the nodes of a. If a point is not identified, its returned index is -1.
- Parameters:
hook (created by createHook) – hook
a ([array,list of arrays] or [pyTree, base, zone, list of zones]) – input data
tol (float) – matching tolerance
- Returns:
indices of identified points
- Return type:
numpy array or list of numpy arrays
Example of use:
# - identifyNodes (array) - import Converter as C import Generator as G import Post as P a = G.cart((0,0,0), (1,1,1), (10,10,10)) # Enregistre les noeuds de a dans le hook hook = C.createHook(a, function='nodes') # Indices des noeuds de a correspondant aux noeuds de f f = P.exteriorFaces(a) nodes = C.identifyNodes(hook, f); print(nodes) #>> [ 1 2 3 4 5 6 7 ...]
# - identifyNodes (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P a = G.cart((0,0,0), (1,1,1), (10,10,10)) hook = C.createHook(a, function='nodes') # Indices des noeuds de a correspondant aux noeuds de f f = P.exteriorFaces(a) nodes = C.identifyNodes(hook, f); print(nodes) #>> [ 1 2 3 4 5 6 7 ...]
# - identifyNodes (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Geom.PyTree as D a = G.cart((0,0,0), (1,1,1), (10,10,10)) b = G.cart((12,0,0), (1,1,1), (10,10,10)) hook, indir = C.createGlobalHook([a,b], function='nodes', indir=1) offset = [0, C.getNPts(a), C.getNPts(b)] f = D.point((13,3,3)) nodes = C.identifyNodes(hook, f) ind = nodes[0] print('Le premier point de f a pour indice', ind-offset[indir[ind]], 'sur la zone', indir[ind]) #>> Le premier point de f a pour indice 332 sur la zone 1
- Converter.identifyFaces(hook, a, tol=1.e-11)
Identify face centers of a with points stored in hook. Return the indices of hook corresponding to the faces of a. If a face is not identified, its returned index is -1.
- Parameters:
hook (created by createHook) – hook
a ([array,list of arrays] or [pyTree, base, zone, list of zones]) – input data
tol (float) – matching tolerance
- Returns:
indices of identified faces
- Return type:
numpy array or list of numpy arrays
Example of use:
# - identifyFaces (array) - import Converter as C import Generator as G a = G.cartNGon((0,0,0), (1,1,1), (10,10,10)) b = G.cartNGon((9,0,0), (1,1,1), (10,10,10)) # Enregistre les centres des faces de a dans le hook hook = C.createHook(a, function='faceCenters') # Indices des faces de a correspondant aux faces de b faces = C.identifyFaces(hook, b); print(faces) #>> [10 -1 -1 ..., -1 -1 -1]
# - identifyFaces (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cartNGon((0,0,0), (1,1,1), (10,10,10)) b = G.cartNGon((9,0,0), (1,1,1), (10,10,10)) # Enregistre les centres des faces de a dans le hook hook = C.createHook(a, function='faceCenters') # Indices des faces de a correspondant aux faces de b faces = C.identifyFaces(hook, b); print(faces) #>> [10 -1 -1 ..., -1 -1 -1]
- Converter.identifyElements(hook, a, tol=1.e-11)
Identify element centers of a with points stored in hook. Return the indices of hook corresponding to the elements of a. If a elements is not identified, its returned index is -1.
- Parameters:
hook (created by createHook) – hook
a ([array,list of arrays] or [pyTree, base, zone, list of zones]) – input data
tol (float) – matching tolerance
- Returns:
indices of identified elements
- Return type:
numpy array or list of numpy arrays
Example of use:
# - identifyElements (array) - import Converter as C import Generator as G import Post as P a = G.cartNGon( (0,0,0), (1,1,1), (10,10,10) ) f = P.exteriorElts(a) # Enregistre les centres des elements dans le hook hook = C.createHook(a, function='elementCenters') # Indices des elements de a correspondant aux centres des elts de f elts = C.identifyElements(hook, f); print(elts) #>> [ 1 2 3 4 5 ... 726 727 728 729]
# - identifyElements (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Post.PyTree as P a = G.cartNGon((0,0,0), (1,1,1), (10,10,10)) f = P.exteriorElts(a) # Enregistre les centres des faces dans le hook hook = C.createHook(a, function='elementCenters') # Indices des faces de a correspondant aux centres des elts de f elts = C.identifyElements(hook, f); print(elts) #>> [ 1 2 3 ... 726 727 728 729]
- Converter.identifySolutions(tRcv, tDnr, hookN=None, hookC=None, vars=[], tol=1.e6)
Set the solution field in tRcv with the nearest point solution of tDnr. Hooks must be global hooks on tDnr.
Exists also as an in-place version (_identifySolutions) which modifies tRcv and returns None.
- Parameters:
tRcv ([array,list of arrays] or [pyTree, base, zone, list of zones]) – receiver data
tDnr ([array,list of arrays] or [pyTree, base, zone, list of zones]) – donor data
hookN (created by createGlobalHook) – global hook if field on nodes
hookC (created by createGlobalHook) – global hook if field on centers
vars (list of strings) – variable names list
tol (float) – tolerance for matching
- Returns:
a reference copy of tRcv
- Return type:
identical to input
Example of use:
# - identifySolutions (array) - import Converter as C import Generator as G import Geom as D ni = 21; nj = 21; nk = 21 m = G.cart((0,0,0), (1./(ni-1),1./(nj-1),1./(nk-1)), (ni,nj,nk)) hook = C.createGlobalHook([m], function='nodes') sol = C.initVars(m, 'ro={x}') sol = C.extractVars(sol,['ro']) # Create extraction mesh a = D.sphere((0,0,0),0.1) # Identify solutions of sol in a a2 = C.identifySolutions(a, sol, hook) C.freeHook(hook) a = C.addVars([a,a2]) m = C.addVars([m,sol]) C.convertArrays2File([m,a], 'out.plt')
# - identifySolutions (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Geom.PyTree as D # A mesh with a field ni = 21; nj = 21; nk = 21 m = G.cart((0,0,0), (1./(ni-1),1./(nj-1),1./(nk-1)), (ni,nj,nk)) m = C.initVars(m, '{Density}={CoordinateX}') # Create extraction mesh a = D.sphere((0,0,0),0.1) # Identify solutions hook = C.createGlobalHook([m], 'nodes') a = C.identifySolutions(a, m, hookN=hook) C.freeHook(hook) C.convertPyTree2File(a, 'out.cgns')
- Converter.nearestNodes(hook, a)
Find nearest points stored in hook to the nodes of a. Return the indices of hook nearest of a given node of a and the corresponing distance.
- Parameters:
hook (created by createHook) – hook
a ([array,list of arrays] or [pyTree, base, zone, list of zones]) – input data
- Returns:
indices and distance of nearest points
- Return type:
tuple of 2 numpys or list of tuple of 2 numpys
Example of use:
# - nearestNodes (array) - import Converter as C import Generator as G import Transform as T import Post as P a = G.cart((0,0,0), (1,1,1), (10,10,10)) # Enregistre les noeuds de a dans le hook hook = C.createHook(a, function='nodes') # Indices des noeuds de a les plus proches des noeuds de f # et distance correspondante b = T.translate(a,(0.15,0.,0.)) f = P.exteriorFaces(b) nodes,dist = C.nearestNodes(hook, f); print(nodes, dist) #>> [ 1 2 3 ...] [0.15 0.15 0.15 ...]
# - nearestNodes (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Transform.PyTree as T import Post.PyTree as P a = G.cart((0,0,0), (1,1,1), (10,10,10)) b = T.translate(a,(0.15,0.,0.)) f = P.exteriorFaces(b) hook = C.createHook(a, function='nodes') # Indices des noeuds de a les plus proches des noeuds de f # et distance correspondante nodes,dist = C.nearestNodes(hook, f) print(nodes, dist)
- Converter.nearestFaces(hook, a)
Find nearest points stored in hook to the face centers of a. Return the indices of hook nearest of a given face of a and the corresponing distance.
- Parameters:
hook (created by createHook) – hook
a ([array,list of arrays] or [pyTree, base, zone, list of zones]) – input data
- Returns:
indices and distance of nearest points
- Return type:
tuple of 2 numpys or list of tuple of 2 numpys
Example of use:
# - nearestFaces (array) - import Converter as C import Generator as G a = G.cartNGon((0,0,0), (1,1,1), (10,10,10)) b = G.cartNGon((9.1,0,0), (1,1,1), (10,10,10)) # Enregistre les centres des faces de a dans le hook hook = C.createHook(a, function='faceCenters') # Indices des faces de a les plus proches des faces de b # et distance correspondante faces,dist = C.nearestFaces(hook, b) print(faces,dist) C.freeHook(hook)
# - nearestFaces (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cartNGon((0,0,0), (1,1,1), (10,10,10)) b = G.cartNGon((9.1,0,0), (1,1,1), (10,10,10)) # Enregistre les centres des faces de a dans le hook hook = C.createHook(a, function='faceCenters') # Indices des faces de a les plus proches des faces de b # et distance correspondante faces,dist = C.nearestFaces(hook, b) print(faces,dist)
- Converter.nearestElements(hook, a)
Find nearest points stored in hook to the elements centers of a. Return the indices of hook nearest of a given element of a and the corresponing distance.
- Parameters:
hook (created by createHook) – hook
a ([array,list of arrays] or [pyTree, base, zone, list of zones]) – input data
- Returns:
indices and distance of nearest points
- Return type:
tuple of 2 numpys or list of tuple of 2 numpys
Example of use:
# - nearestElements (array) - import Converter as C import Generator as G import Transform as T import Post as P a = G.cartNGon( (0,0,0), (1,1,1), (10,10,10) ) b = T.translate(a,(0.15,0.,0.)) f = P.exteriorElts(b) # Enregistre les centres des faces dans le hook hook = C.createHook(a, function='elementCenters') # Indices des faces de a les plus proches des centres des elts de f # et distance correspondante elts,dist = C.nearestElements(hook, f) print(elts,dist)
# - nearestElements (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Transform.PyTree as T import Post.PyTree as P a = G.cartNGon((0,0,0), (1,1,1), (10,10,10)) b = T.translate(a,(0.15,0.,0.)) f = P.exteriorElts(b) # Enregistre les centres des faces dans le hook hook = C.createHook(a, function='elementCenters') # Indices des faces de a les plus proches des centres des elts de f # et distance correspondante elts,dist = C.nearestElements(hook, f) print(elts,dist)
- Converter.createGlobalIndex(a)
Create a index field corresponding to the vertex number.
- Parameters:
a ([array,list of arrays] or [pyTree, base, zone, list of zones]) – input data
- Returns:
input data with a ‘globalIndex’ field
- Return type:
Identical to input
Example of use:
# - createGlobalIndex (array) - import Converter as C import Generator as G a = G.cart((0,0,0), (1,1,1), (10,10,10)) C._createGlobalIndex(a) C.convertArrays2File(a, 'out.plt')
# - createGlobalIndex (pyTree) - import Converter.PyTree as C import Generator.PyTree as G a = G.cart((0,0,0), (1,1,1), (10,10,10)) C._createGlobalIndex(a) C.convertPyTree2File(a, 'out.cgns')
- Converter.recoverGlobalIndex(a, b)
Push the field of b in a follwing the global index field.
- Parameters:
a ([array,list of arrays] or [pyTree, base, zone, list of zones]) – input data
b ([array,list of arrays] or [pyTree, base, zone, list of zones]) – input data with ‘globalIndex’ field
- Returns:
modified a with the field of b
- Return type:
Identical to a
Example of use:
# - recoverGlobalIndex (array) - import Converter as C import Generator as G import Transform as T a = G.cart((0,0,0), (1,1,1), (10,10,10)) C._createGlobalIndex(a) b = T.splitNParts(a, 2) C._initVars(b[0], 'f=1') C._initVars(b[1], 'f=2') C._recoverGlobalIndex(a, b[0]) C._recoverGlobalIndex(a, b[1]) a = C.rmVars(a, 'globalIndex') C.convertArrays2File(a, 'out.plt')
# - recoverGlobalIndex (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Transform.PyTree as T a = G.cart((0,0,0), (1,1,1), (10,10,10)) C._createGlobalIndex(a) b = T.splitNParts(a, 2) C._initVars(b[0], 'f=1') C._initVars(b[1], 'f=2') C._recoverGlobalIndex(a, b[0]) C._recoverGlobalIndex(a, b[1]) C._rmVars(a, 'globalIndex') C.convertPyTree2File(a, 'out.cgns')
Client/server to exchange arrays/pyTrees
- Converter.createSockets(nprocs=1, port=15555)
Create sockets for receiving arrays/pyTrees. If you are sending from a MPI run with nprocs, set nprocs accordingly.
- Parameters:
nprocs (int) – the number of process the sender job is running with.
port (int) – the communication port
- Returns:
socket
- Return type:
socket
- Converter.listen(sockets)
Listen for client sends.
- Parameters:
sockets (sockets) – sockets (created with createSockets)
- Returns:
arrays or pyTrees
Example of use:
# - listen (array) - import Converter as C import CPlot sockets = C.createSockets() while True: out = [] for s in sockets: a = C.listen(s) if a is not None: out.append(a) if out != []: CPlot.display(out)
# - listen (pyTree) - import Converter.PyTree as C import CPlot.PyTree as CPlot sockets = C.createSockets() while True: out = [] for s in sockets: a = C.listen(s) if a is not None: out.append(a) if out != []: CPlot.display(out)
- Converter.send(a, host='localhost', rank=0, port=15555)
Send data to the server.
- Parameters:
a ([array,list of arrays] or [pyTree, base, zone, list of zones]) – input data
host (string) – host we are sending to
rank (int) – rank of sending process
port (int) – communication port (must be the same as createSockets)
Example of use:
# - send (array) - import Converter as C import Generator as G import Transform as T a = G.cart((0,0,0), (1,1,1), (100,100,300)) C.send(a, 'localhost') for i in range(30): a = T.rotate(a, (0,0,0), (0,0,1), 10.) C.send(a, 'localhost')
# - send (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Transform.PyTree as T a = G.cart((0,0,0), (1,1,1), (100,100,30)) C.send(a, 'localhost') for i in range(30): a = T.rotate(a, (0,0,0), (0,0,1), 10.) C.send(a, 'localhost')
Converter arrays / 3D arrays conversion
In some applications, arrays must be seen as 3D arrays, that is (ni,nj,nk) numpy arrays instead of (nfld, ni*nj*nk) arrays. A 3D array is defined as [ [‘x’,’y’,…],[ ax, ay, … ] ] where ax is a (ni,nj,nk) numpy array corresponding to variable x, and so on…
- Converter.Array3D.convertArrays2Arrays3D(a)
Convert arrays to 3D arrays (ni,nj,nk).
- Parameters:
a ([list of arrays]) – input data
- Returns:
list of 3D arrays
Example of use:
# - convertArrays2Arrays3D - import Generator as G import Converter.Array3D a = G.cart((0,0,0), (0.1, 0.2, 1.), (11, 4, 1)) b = Converter.Array3D.convertArrays2Arrays3D([a]); print(b) #>> [[['x', 'y', 'z'], [array([[[ 0. ], ...]]]
- Converter.Array3D.convertArrays3D2Arrays(a)
Convert 3D arrays to Converter arrays.
- Parameters:
a ([list of 3D arrays]) – input data
- Returns:
list of arrays
Example of use:
# - convertArrays3D2Arrays - import Converter as C import Generator as G import Converter.Array3D a = G.cart( (0,0,0), (0.1, 0.2, 1.), (11, 4, 2)) b = Converter.Array3D.convertArrays2Arrays3D([a]) c = Converter.Array3D.convertArrays3D2Arrays(b); print(c)