Distributor2: distribution of grids on processors
Preamble
This module provides functions to distribute blocks on a given number of processors. At the end of the process, each block will have a number corresponding to the processor it must be affected to for a balanced computation, depending on given criterias. This module doesn’t perform splitting (see the Transform module for that).
This module is part of Cassiopee, a free open-source pre- and post-processor for CFD simulations.
For use with the array interface, you have to import Distributor2 module:
import Distributor2 as D2
For use with the pyTree interface:
import Distributor2.PyTree as D2
List of functions
– Automatic load balance
|
Distribute zones over NProc processors. |
|
Distribute a pyTree over processors. |
– Various operations
|
Add a "proc" node to zones with the given proc value. |
Return the value of proc node. |
|
|
Return the proc of a zone in a dictionary proc['zoneName']. |
|
Return the list of zones for each proc. |
Copy distribution of a in b. |
|
|
Print stats dictionary. |
|
Redistribute tree from graph. |
Contents
- Distributor2.distribute(A, NProc, prescribed=None, perfo=None, weight=None, com=None, algorithm='graph', mode='nodes', nghost=0)
Distribute automatically the blocks amongst NProc processors.
prescribed is a list of blocks that are forced to be on a given processor.
For instance, prescribed[2] = 0 means that block 2 MUST be affected to processor 0.
perfo is a tuple or a tuple list for each processor.
Each tuple describes the relative weight of solver CPU time regarding the communication speed and latence (solverWeight, latenceWeight, comSpeedWeight).
weight is a list of weight for each block indicating the relative cost for solving each block.
com is a ixj matrix describing the volume of points exchanged between bloc i and bloc j.
algorithm can be chosen in: ‘gradient’, ‘genetic’, ‘fast’, ‘graph’
mode=’node’, ‘cells’: optimize distribution of block considering node (cells) numbers.
nghost: take into account ghost cells (only for structured grids)
- Parameters:
a ([array, list of arrays]) – Input data
N (int) – number of processors
prescribed (list of ints) – list of prescribed blocks
perfo (list of tuples) – list of performance for each processor
weight (list of ints) – list of weight for each block
algorithm (string) – [‘gradient’, ‘genetic’, ‘fast’, ‘graph’]
nghost (int) – number of ghost cells present in the mesh
The function output is a stats dictionary. stat[‘distrib’] is a vector describing the attributed processor for each block, stats[‘meanPtsPerProc’] is the mean number of points per proc, stats[‘varMin’] is the minimum variation of number of points, stats[‘varMax’] is the maximum variation of number of points, stats[‘varRMS’] is the mean variation of number of points, stats[‘nptsCom’] is the number of points exchanged between processors for communication, stats[‘comRatio’] is the ratio between the number of points exchanged between processors in this configuration divided by the total number of matching/overlap boundary points, stats[‘adaptation’] is the value of the optimized function.
Example of use:
# - distribute (array) - import Generator as G import Distributor2 as D2 import numpy from Converter.Internal import E_NpyInt # Distribution sans communication entre blocs N = 11 arrays = [] for i in range(N): a = G.cart( (0,0,0), (1,1,1), (10+i, 10, 10) ) arrays.append(a) out = D2.distribute(arrays, NProc=5); print(out) # Distribution avec des perfos differentes pour chaque proc out = D2.distribute(arrays, NProc=3, perfo=[(1,0,0), (1.2,0,0), (0.2,0,0)]); print(out) # Distribution avec forcage du bloc 0 sur le proc 1, du bloc 2 sur le proc 3 # -1 signifie que le bloc est a equilibrer prescribed = [-1 for x in range(N)] prescribed[0] = 1; prescribed[2] = 3 out = D2.distribute(arrays, NProc=5, prescribed=prescribed); print(out) # Distribution avec communications entre blocs, perfos identique pour tous # les procs volCom = numpy.zeros((N, N), dtype=E_NpyInt) volCom[0,1] = 100; # Le bloc 0 echange 100 pts avec le bloc 1 out = D2.distribute(arrays, NProc=5, com=volCom, perfo=(1,0.,0.1)); print(out) # Distribution avec des solveurs differents pour les blocs (le solveur est 2 # fois plus couteux pour les bloc 2 et 4) out = D2.distribute(arrays, weight=[1,2,1,2,1,1,1,1,1,1,1], NProc=3); print(out)
- Distributor2.PyTree.distribute(A, NProc, prescribed=None, perfo=None, weight=None, useCom='match', algorithm='graph', mode='nodes', nghost=0)
Distribute automatically the blocks amongst NProc processors.
With the pyTree interface, the user-defined node .Solver#Param/proc is updated with the attributed processor number.
If useCom=0, only the grid number of points is taken into account. If useCom=’match’, only match connectivities are taken into account. if useCom=’overlap’, only overlap connectivities are taken into account. if useCom=’bbox’, overlap between zone bbox is taken into account. if useCom=’ID’, ID (interpolation or match) and IBCD (IBM points) are taken into account. If useCom=’all’, matching and overlap communications are taken into account.
When using distributed trees, prescribed must be a dictionary containing the zones names as key, and the prescribed proc as value. weight is also a dictionary where the keys are the zone names and the weight as the value. It is not mandatory to assign a weight to all the zones of the pyTree. Default value is assumed to be 1, only different weight values can be assigned to zones. t can be either a skeleton or a loaded skeleton pyTree for useCom=0 or useCom=’match’, but must be a loaded skeleton tree only for the other settings.
- Parameters:
a ([pyTree, base, zone, list of zones]) – Input data
N (int) – number of processors
prescribed (dictionary) – dictionary of prescribed block (optional)
perfo (list of tuples) – list of perfo for each processor (optional)
weight (dictionary) – dictionary of weights for block (optional)
useCom (['0, 'all', 'match', 'overlap', 'bbox', 'ID']) – tell what to use to measure communication volumes
algorithm (string) – [‘gradient’, ‘genetic’, ‘fast’, ‘graph’]
nghost (int) – number of ghost cells present in the mesh
Example of use:
# - distribute (pyTree) - import Generator.PyTree as G import Distributor2.PyTree as D2 import Converter.PyTree as C import Connector.PyTree as X N = 11 t = C.newPyTree(['Base']) pos = 0 for i in range(N): a = G.cart((pos,0,0), (1,1,1), (10+i, 10, 10)) pos += 10 + i - 1 t[2][1][2].append(a) t = X.connectMatch(t) # Distribute on 3 processors t, stats = D2.distribute(t, 3) C.convertPyTree2File(t, 'out.cgns')
Various operations
- Distributor2.PyTree.addProcNode(a, NProc)
Add a “.Solver#Param/proc” node to all zones of a with given value. Exists also as in place version (_addProcNode) that modifies a and returns None.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
NProc (int) – proc to be set
- Returns:
reference copy of a
- Return type:
identical to input
Example of use:
# - addProcNode (pyTree) - import Converter.PyTree as C import Converter.Internal as Internal import Generator.PyTree as G import Distributor2.PyTree as D2 a = G.cart((0,0,0), (1,1,1), (10,10,10)) D2._addProcNode(a, 12) Internal.printTree(a) #>> ['cart',array(shape=(3, 3),dtype='int32',order='F'),[3 sons],'Zone_t'] #>> |_['ZoneType',array('b'Structured'',dtype='|S1'),[0 son],'ZoneType_t'] #>> | ... #>> |_['.Solver#Param',None,[1 son],'UserDefinedData_t'] #>> |_['proc',array([12],dtype='int32'),[0 son],'DataArray_t'] C.convertPyTree2File(a, 'out.cgns')
- Distributor2.PyTree.getProc(a)
Return the proc value of a zone or a list of zones.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
- Returns:
the affected proc of zone
- Return type:
int or list of ints (for multiple zones)
Example of use:
# - getProc (pyTree) - import Generator.PyTree as G import Distributor2.PyTree as D2 a = G.cart((0,0,0), (1,1,1), (10,10,10)) a = D2.addProcNode(a, 12) proc = D2.getProc(a); print(proc) #>> 12
- Distributor2.PyTree.getProcDict(a, prefixByBase=False)
Return a dictionary where procDict[‘zoneName’] is the no of proc affected to zone ‘zoneName’.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
prefixByBase (boolean) – if true, add base prefix to zone name
- Returns:
the dictionary of zone/proc.
- Return type:
dictionary
Example of use:
# - getProcDict (pyTree) - import Generator.PyTree as G import Distributor2.PyTree as D2 import Converter.PyTree as C import Connector.PyTree as X N = 11 t = C.newPyTree(['Base']) pos = 0 for i in range(N): a = G.cart((pos,0,0), (1,1,1), (10+i, 10, 10)) pos += 10 + i - 1 t[2][1][2].append(a) t = X.connectMatch(t) t, stats = D2.distribute(t, 3) proc = D2.getProcDict(t) zoneNames = C.getZoneNames(t, prefixByBase=False) for z in zoneNames: print(z, proc[z]) # - or with base prefix - proc = D2.getProcDict(t, prefixByBase=True) zoneNames = C.getZoneNames(t, prefixByBase=True) for z in zoneNames: print(z, proc[z])
- Distributor2.PyTree.getProcList(a, NProc=None)
Return procList where procList[proc] is a list of zone names attributed to the proc processor.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
- Returns:
the affected proc of zone
- Return type:
int or list of ints
Example of use:
# - getProcList (pyTree) - import Generator.PyTree as G import Distributor2.PyTree as D2 import Converter.PyTree as C import Connector.PyTree as X N = 11 t = C.newPyTree(['Base']) pos = 0 for i in range(N): a = G.cart((pos,0,0), (1,1,1), (10+i, 10, 10)) pos += 10 + i - 1 t[2][1][2].append(a) t = X.connectMatch(t) t, stats = D2.distribute(t, 3) procList = D2.getProcList(t) print(procList)
- Distributor2.PyTree.copyDistribution(a, b)
Copy the distribution from b to a matching zones by their name. Exists also as in place version (_copyDistribution) that modifies a and returns None.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
b ([pyTree, base, zone, list of zones]) – original data
- Returns:
modifie reference copy of a
- Return type:
same as input data
Example of use:
# - copyDistribution (pyTree) - import Converter.PyTree as C import Distributor2.PyTree as D2 import Generator.PyTree as G # Case N = 11 t = C.newPyTree(['Base']) pos = 0 for i in range(N): a = G.cart((pos,0,0), (1,1,1), (10+i, 10, 10)) a[0] = 'cart%d'%i pos += 10 + i - 1 D2._addProcNode(a, i) t[2][1][2].append(a) t2 = C.newPyTree(['Base']) for i in range(N): a = G.cart((pos,0,0), (1,1,1), (10+i, 10, 10)) a[0] = 'cart%d'%i pos += 10 + i - 1 t2[2][1][2].append(a) t2 = D2.copyDistribution(t2, t) C.convertPyTree2File(t2, 'out.cgns')
- Distributor2.Mpi.redispatch(a)
Redispatch a tree where a new distribution is defined in the node ‘proc’.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
- Returns:
modifie reference copy of a
- Return type:
same as input data
Example of use:
# - redispatch (pyTree) - import Converter.PyTree as C import Distributor2.PyTree as D2 import Distributor2.Mpi as D2mpi import Converter.Mpi as Cmpi import Connector.PyTree as X import Converter.Internal as Internal import Generator.PyTree as G # Case N = 11 t = C.newPyTree(['Base']) pos = 0 for i in range(N): a = G.cart((pos,0,0), (1,1,1), (10+i, 10, 10)) pos += 10 + i - 1 t[2][1][2].append(a) t = X.connectMatch(t) if Cmpi.rank == 0: C.convertPyTree2File(t, 'in.cgns') Cmpi.barrier() # lecture du squelette a = Cmpi.convertFile2SkeletonTree('in.cgns') # equilibrage 1 (a, dic) = D2.distribute(a, NProc=Cmpi.size, algorithm='fast', useCom=0) # load des zones locales dans le squelette a = Cmpi.readZones(a, 'in.cgns', rank=Cmpi.rank) # equilibrage 2 (a partir d'un squelette charge) (a, dic) = D2.distribute(a, NProc=Cmpi.size, algorithm='gradient1', useCom='match') Cmpi._convert2PartialTree(a) D2mpi._redispatch(a) # force toutes les zones sur 0 zones = Internal.getNodesFromType(a, 'Zone_t') for z in zones: nodes = Internal.getNodesFromName(z, 'proc') Internal.setValue(nodes[0], 0) D2mpi._redispatch(a) # Reconstruit l'arbre complet a l'ecriture Cmpi.convertPyTree2File(a, 'out.cgns')
- Distributor2.PyTree.printProcStats(a, stats=None, NProc=None)
Print statistics for each processor: number of points and list of zones names.
- Parameters:
a ([pyTree, base, zone, list of zones]) – input data
stats (Python dictionary) – dictionary obtained from Distributor2.distribute
NProc (integer) – number of processors
- Returns:
None
Example of use:
# - printProcStats (pyTree) - import Generator.PyTree as G import Distributor2.PyTree as D2 import Converter.PyTree as C import Connector.PyTree as X N = 11 t = C.newPyTree(['Base']) pos = 0 for i in range(N): a = G.cart((pos,0,0), (1,1,1), (10+i, 10, 10)) pos += 10 + i - 1 t[2][1][2].append(a) t = X.connectMatch(t) # Distribute on 3 processors t, stats = D2.distribute(t, 3) # With stats and NProc D2.printProcStats(t, stats, NProc=3) # NProc is guessed from stats D2.printProcStats(t, stats) # All are guessed from t D2.printProcStats(t) C.convertPyTree2File(t, 'out.cgns')
Note
new in version 2.7.